

# Facultad de Ciencias Naturales, Exactas y de la Educación

**Departamento:** Matemáticas

Tipo de Actividad: Asignatura Créditos: 4 por semestre

Nombre: Geometría Diferencial (Mat 411) Intensidad Horaria: 4 h.s.

Requisitos: Mat 202

### **DESCRIPCIÓN DEL CURSO**

Tal como su nombre lo indica, este es un curso de geometría. Sin embargo, aquí se podrá llevar a cabo un estudio mucho más amplio y versátil que aquel que se hace cuando se estudian tópicos de geometría euclidiana o geometría analítica, ya que en éstas siempre se está restringido a utilizar técnicas geométricas y algebraicas elementales (aunque no necesariamente triviales o despreciables). Por el contrario, en geometría diferencial se hace uso de las herramientas ofrecidas por el cálculo y el análisis para estudiar una amplia gama de propiedades geométricas de las curvas y superficies. Pero debido a que dichas herramientas del análisis operan solamente cuando las funciones son suaves o diferenciables, aquí se requiere que las curvas y superficies sean suaves por lo menos a trozos.

## **OBJETIVO GENERAL**

Iniciar al estudiante en los métodos que utiliza la geometría diferencial para el estudio de curvas y superficies en el espacio.

# **OBJETIVOS ESPECÍFICOS**

- Conocer las fórmulas de Frenet y comprender su gran potencial como método general para solucionar problemas diversos.
- 2. Ampliar el cálculo que comunmente se realiza en el plano euclidiano y mostrar que cada superficie posee un cálculo diferencial y un cálculo integral propios.
- 3. Estudiar los mecanismos matemáticos gracias a los cuales se puede caracterizar, de manera precisa, la forma de una superficie.
- 4. Realizar una primera aproximación a la "geometría intrínseca" de una superficie.
- 5. Enunciar el teorema de Gauss-Bonnet (opcional).

#### **CONTENIDO**

#### CAPÍTULO I CÁLCULO EN EL ESPACIO EUCLIDIANO

- 1.1 1-formas.
- 1.2 Formas diferenciales.

### CAPÍTULO II CAMPOS DE SISTEMAS DE REFERENCIA

- 2.1 Curvas.
- 2.2 Las fórmulas de Frenet.
- 2.3 Curvas de rapidez arbitraria.
- 2.4 Derivadas covariantes.
- 2.5 Campos de sistemas de referencia.
- 2.6 Formas de conexión.
- 2.7 Las ecuaciones estructurales.

# CAPÍTULO III GEOMETRÍA EUCLIDIANA

3.1 Orientación.

# CAPÍTULO IV EL CÁLCULO EN UNA SUPERFICIE

- 4.1 Las superficies en  $\mathbb{R}^3$ .
- 4.2 Los cálculos en las cartas.
- 4.3 Funciones diferenciables y vectores tangentes.

- 4.4 Formas diferenciales en una superficie.
- 4.5 Mapeos de superficies.
- 4.6 Integración de formas.
- 4.7 Propiedades topológicas de las superficies.
- 4.8 Variedades.

#### CAPÍTULO V **OPERADORES DE FORMA**

- 5.1 El operador de forma de M  $\subset \mathbb{R}^3$ .
- 5.2 Curvatura normal.
- 5.3 Curvatura gaussiana.
- 5.4 Técnicas de cálculo.
- 5.5 Curvas especiales en una superficie.
- 5.6 Superficies de revolución.

# CAPÍTULO VI GEOMETRÍA DE LAS SUPERFICIES EN $\mathbb{R}^3$

- 6.1 Las ecuaciones fundamentales.
- 6.2 Cálculos con formas.
- 6.3 Algunos teoremas globales.
- 6.4 Isometrías e isometrías locales.
- 6.5 La geometría intrínseca de superficie de  $\mathbb{R}^3$ .
- 6.6 Integración y orientación.
- 6.7 Congruencia de superficies.

# CAPÍTULO VII LA GEOMETRÍA DE RIEMANN (OPCIONAL)

- 7.1 Superficies geométricas.7.2 La curvatura gaussiana.
- 7.3 La derivada covariante.
- 7.4 Las geodésicas.
- 7.5 Propiedades minimizantes de la longitud de las geodésicas.
- 7.6 Curvatura y puntos conjugados.
- 7.7 Mapeos que conservan los productos interiores.
- 7.8 El teorema de Gauss-Bonnet.

#### **METODOLOGÍA**

El curso será desarrollado principalmente con base en clases magistrales, pero se espera que el estudiante formule muchos interrogantes tanto en clase como en el horario de consulta.

# **EVALUACIÓN**

El tipo de evaluación y la respectiva ponderación deben ser concertadas, el primer día de clase, con los estudiantes y teniendo en cuenta el reglamento estudiantil de la universidad del Cauca.

# **BIBLIOGRAFÍA**

**TEXTO GUÍA:** O'NEILL Barret. Elementos de Geometría Diferencial. Limusa-Wiley, S.A. México. 1972.

[1] LIPSCHUTZ, Martin M. Geometría Diferencial. Schaum-McGraw-Hill.

México. 1982.

[2] STRUIK D.J. Lectures on Classical Differential Geometry. Addison-Wesley, Reading. Massachusetts. 1961.

[3] WILLMORE T.J. An Introduction to Differential Geometry. Oxford University Press. Londres y Nueva York. Moderna. Fondo Educativo Interamericano. Bogotá. 1.970.