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Abstract

A family of Least-Change Secant-Update methods for solving nonlinear complementarity problems based on
nonsmooth systems of equations is introduced. Local and superlinear convergence results for the algorithms
are proved. Two different reformulations of the nonlinear complementarity problem as a nonsmooth system
are compared, both from the theoretical and the practical point of view. A global algorithm for solving the
nonlinear complementarity problem which uses the algorithms introduced here is also presented. Some numerical
experiments show a good performance of this algorithm. 1999 Elsevier Science B.V. and IMACS. All rights
reserved.
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1. Introduction

Let F :Rn→ Rn, F (x) = (f1(x), f2(x), . . . , fn(x)) be a continuously differentiable mapping. The
nonlinear complementarity problem (NCP) consists of finding a vectorx ∈ Rn such thatx > 0,
F(x) > 0, 〈x,F (x)〉 = 0. Variational inequalities problems, linear complementarity problems, mixed
complementarity and horizontal complementarity problems are related with the NCP. The NCP appears
in many problems of Physics and Economy (see [4,6,15]). In the last few years, much work has been
done with the aim of finding efficient Newton-type algorithms to solve the NCP, trying to find merit
functions whose minimizers agree with the solutions of the NCP and also seeking methods with good
local convergence rate (see [8]). A well-known way to deal with the NCP is to reformulate it as a
nonsmooth nonlinear system of equations. See [16] and references therein. In [19] a quasi-Newton
approach for nonsmooth nonlinear equations is proposed:

G(x)=min
{
x,F (x)

}
, (1)
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where min is taken componentwise (see [16]). It is easy to verify thatx is a zero ofG if and only if x
solves the NCP. If there existsi such thatxi = fi(x), the functionG may be nonsmooth atx. The second
function is the Burmeister–Fischer functionΦ :Rn→Rn defined by

Φ(x)= (ϕ(x1, f1(x)
)
, ϕ
(
x2, f2(x)

)
, . . . , ϕ

(
xn, fn(x)

))
, (2)

whereϕ :R2→R is given by

ϕ(x, y)= ∥∥(x, y)∥∥2− x − y.
See [5].

This function is such thatϕ(x, y)= 0 if and only if x > 0, y > 0 andxy = 0 and so it is obvious that
the NCP is equivalent to solving the nonlinear systemΦ(x)= 0. If there existsi such thatxi = fi(x)= 0,
we also have that the functionΦ is nonsmooth atx. The functionG will be called here the “Min
function” whileΦ will be called the “Fischer function”. In this work we develop and analyze methods
to solve the NCP using systems (1) and (2). In both cases we develop a family of Least-Change Secant-
Update (LCSU) methods, following the lines of [12]. For these families we prove local and superlinear
convergence under suitable assumptions.

This work is organized as follows. In Section 2 we state the main assumptions, we prove some
consequences and we develop the LCSU theory for the Min function. In Section 3 we state similar
hypotheses under which the same results hold for the Fischer function. Section 4 is dedicated to show
that the assumption of BD-regularity ofG at x∗ made in Section 2 is not equivalent to the assumption
of Φ having all the elements nonsingular in a subsetZ∗ of ∂BΦ(x∗) made in Section 3. In Section 5
we present some numerical results which show the sensitivity of the Fischer function to degeneracy. We
also present the numerical performance of both formulations when applied to 16 test problems given
in [7]. In Section 6 we present a globalizing strategy to solve the NCP which take the ideas of the hybrid
algorithm given in [7], using the global algorithm given in [2]. We present the results of some numerical
experiments which show a good performance of our algorithm. Section 7 contains some remarks on what
we have done in this paper and presents some possibilities for future work.

A few words about notation. Given a matrixM ∈Rn×n we denote by[M]i its ith row. We will denote
the Jacobian matrix ofF atx by F ′(x).(

∂fi

∂x1
(x), . . . ,

∂fi

∂xn
(x)

)
is denoted byf ′i (x) andB(x, ε) means the open ball centered atx with radiusε.

We finish this section recalling some concepts which we use in the text (see [1,16,18]).

Definition 1.1. LetH :Rn→Rn be a locally Lipschitzian function and letDH denotes the set whereH
is differentiable. For allx ∈Rn, the set given by

∂BH(x)=
{

lim
xk→x

H ′
(
xk
)
: xk ∈DH

}
,

is called the generalizedB-Jacobian ofH atx.

Definition 1.2. The convex hull of∂BH(x) is called∂H(x).
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Definition 1.3. LetH :Rn→Rn be locally Lipschitzian atx ∈Rn. We say thatG is semismooth atx if

lim
V ∈ ∂H(x + ty′)
y′ → y, t ↓ 0

V y′

exists for everyy ∈Rn.
Definition 1.4. We say that a semismooth functionH :Rn→ Rn is BD-regular atx if all elements in
∂BH(x) are nonsingular.

2. A local convergence theory forG(x)= 0

2.1. Introduction

In this section we present a family of LCSU methods for solvingG(x)= 0, whereG is given by (1),
and we prove that the algorithms are locally and superlinearly convergent. Givenx0 ∈ Rn an initial
approximation to the solution of the problem, the basic quasi-Newton algorithm applied toG(x)= 0 will
be given by

xk+1= xk −B−1
k G

(
xk
)
,

where each row ofBk is given by

[Bk]i =

ei if xki < fi(x

k),

[Ak]i if xki > fi(x
k),

ei or [Ak]i if xki = fi(xk).
(3)

Here{e1, . . . , en} is the canonical basis ofRn and

Ak =
 [Ak]1...
[Ak]n


is an approximation of the Jacobian matrix ofF at xk. Most times, the matrixAk+1 is obtained fromAk
using secant updates.

2.2. Local assumptions and convergence results

Under the following assumptions we will prove that the sequences generated by the basic quasi-
Newton algorithm of Section 2.1 are well defined and converge linearly to a solution ofG(x)= 0.

(A1) x∗ ∈Rn is such thatG(x∗)= 0.
(A2) There existγ > 0, ε̃ > 0 such that∥∥F ′(x)− F ′(x∗)∥∥6 γ ‖x − x∗‖

for all x ∈ B(x∗, ε̃), where‖ · ‖ denotes an arbitrary norm onRn and its associated matricial
norm.
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(A3) If

B∗ =
 [B∗]1...
[B∗]n


is such that, for alli = 1, . . . , n,

[B∗]i ∈
{
f ′i (x

∗), ei
}
,

and

[B∗]i =
{
ei if x∗i < fi(x∗),
f ′i (x∗) if x∗i > fi(x∗),

(4)

thenB∗ is nonsingular.
We observe that∂BG(x∗)= {G′(x∗)} if x∗ is nondegenerate and that associated to each componentx∗i

of x∗, for whichx∗i = fi(x∗)= 0, there are two matrices whoseith rows are given by (4) in∂BG(x∗). So,
assumption (3) means that we are assuming that the functionG is BD-regular atx∗. Since there are at
most 2m of such matrices, wherem is the number of degenerate components ofx∗, we can defineθ > 0,
a bound to‖B−1∗ ‖ for all of them.

The next lemma prepares the “theorem of the two neighborhoods”. Its proof follows well-known
arguments of quasi-Newton theories but is included here for the sake of completeness.

For eachx ∈Rn, A ∈Rn×n, define

Γ (x,A)= x −B−1G(x), (5)

where

B =
 [B]1...
[B]n

 , with [B]i ∈
{[A]i , ei}, (6)

and

[B]i =
{
ei if xi < fi(x),

[A]i if xi > fi(x).
(7)

As observed after (4), ifxi = fi(x), then[B∗]i will be eitherei or [A]i .
Until the end of this section,‖ · ‖means‖ · ‖∞.

Lemma 2.1. Let all the local assumptions be verified and letr ∈ (0,1). Then there existε1 andδ1 such
that, if

‖x − x∗‖6 ε1 and
∥∥A−F ′(x∗)∥∥6 δ1,

then the functionΓ (x,A) is well defined, and satisfies∥∥Γ (x,A)− x∗∥∥6 r‖x − x∗‖.
Proof. Let ε1> 0 be such that, for alli = 1, . . . , n,

if fi(x
∗) > x∗i thenfi(x) > xi,

if fi(x
∗) < x∗i thenfi(x) < xi
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for all x ∈ B(x∗, ε1). It is obvious thatε1 exists by the continuity ofF. Let δ16 r/(4θ), whereθ is given
by assumption (3) for‖ · ‖∞.

For eachx ∈ B(x∗, ε1), we takeA ∈ B(F ′(x∗), δ1) andB associated toA by (6) and (7) and we
consider in∂BG(x∗) the matrixB∗ that corresponds to the matrixB, that is to say,B∗ is the matrix in
∂BG(x

∗) that has for theith row eitherei or fi
′(x∗) according to theith row of the matrixB beingei

or [A]i . Then it is easily seen that

‖B −B∗‖6 δ1. (8)

So, by Banach lemma,B−1 exists and∥∥B−1∥∥6 2
∥∥B−1
∗
∥∥6 2θ. (9)

From (5), (8) and (9):∥∥Γ (x,A)− x∗∥∥= ∥∥(x − x∗)−B−1G(x)+B−1B∗(x − x∗)−B−1B∗(x − x∗)
∥∥

= ∥∥(I −B−1B∗
)
(x − x∗)−B−1[G(x)−G(x∗)−B∗(x − x∗)]∥∥

6
∥∥B−1∥∥[‖B −B∗‖‖x − x∗‖ + ∥∥G(x)−G(x∗)−B∗(x − x∗)∥∥]
6 2θ

[
δ1+ ‖G(x)−G(x

∗)−B∗(x − x∗)‖
‖x − x∗‖

]
‖x − x∗‖. (10)

But gi(x)− gi(x∗) ∈ {xi − x∗i , fi(x)− fi(x∗)}, and, by the continuity offi,

gi(x)− gi(x∗)=
{
xi − x∗i if x∗i < fi(x∗),
fi(x)− fi(x∗) if x∗i > fi(x∗),

(11)

[B∗(x − x∗)]i =
{
xi − x∗i if x∗i < fi(x∗),
f ′i (x∗)(x − x∗) if x∗i > fi(x∗).

(12)

If x∗i = fi(x∗) we can make any of the choices either in (11) or in (12), since, in this case,

min
{
x∗i , fi(x

∗)
}= x∗i = fi(x∗)= 0.

So, from (11) and (12):

‖G(x)−G(x∗)−B∗(x − x∗)‖
‖x − x∗‖ = ‖F(x)‖‖x − x∗‖ ,

where

f i(x)=
{0 if x∗i 6 fi(x∗),
fi(x)− fi(x∗)− f ′i (x∗)(x − x∗) if x∗i > fi(x∗).

Now,

‖F(x)‖
‖x − x∗‖ = max

16i6n
|fi(x)− fi(x∗)− f ′i (x∗)(x − x∗)|

‖x − x∗‖ ,

and so, by the differentiability ofF , givenρ = r/(4θ), there existsεr > 0 such that

‖x − x∗‖< εr H⇒ ‖G(x)−G(x
∗)−B∗(x − x∗)‖
‖x − x∗‖ 6 ρ.
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Thus,∥∥Γ (x,A)− x∗∥∥6 2θ
[
r

4θ
+ r

4θ

]
‖x − x∗‖ = r‖x − x∗‖.

Therefore, the desired result is proved.2

The following is the so-called theorem of the two neighborhoods. As in Lemma 2.1,‖ · ‖ will mean
‖ · ‖∞.

Theorem 2.1. Let all the local assumptions be verified and letr ∈ (0,1). Then there existε, δ > 0 such
that, if∥∥x0− x∗∥∥6 ε and

∥∥Ak − F ′(x∗)∥∥6 δ, for all k,

the sequence{xk} generated by

xk+1= Γ (xk,Ak)= xk −B−1
k G

(
xk
)
,

is well defined, converges tox∗ and satisfies∥∥xk+1− x∗∥∥6 r∥∥xk − x∗∥∥, for all k = 0,1,2, . . . .

Proof. To prove this we just need to use an inductive argument associated to Lemma 2.1.2

We observe that Theorem 2.1 proves theq-linear convergence of the sequence{xk} in the infinity
norm. Therefore, ifek = ‖xk − x∗‖ is the error related to any other norm, thenek 6 Crke0 whereC is a
positive constant that does not depend onk andr is as in Theorem 2.1. So,r-linear convergence holds in
any other norm.

Using similar arguments as in Lemma 2.1, it is easy to prove the following lemma:

Lemma 2.2. Assume that the assumptions(A1)–(A3) are verified. Then there existε,β > 0 such that, if
‖x − x∗‖< ε then∥∥G(x)∥∥> β‖x − x∗‖.

Even though we have used the infinity norm to prove Lemma 2.2, the above result remains valid for
any other norm, with a suitable change in the constantβ.

In the next theorem we prove that, for the reformulation of the NCP by means ofG(x)= 0, a Dennis–
Moré–Walker type condition ensures superlinear convergence. We use the infinity norm in this proof but
we recall that superlinear convergence results are norm-independent.

Theorem 2.2. Assume that the assumptions(A1)–(A3) are verified and that for somex0 the sequence
generated by

xk+1= xk −B−1
k G

(
xk
)
, (13)

whereBk is given in(3), satisfies

lim
k→∞x

k = x∗.
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DefineAk as in(3) andsk = xk+1− xk. If

lim
k→∞
‖(Ak −F ′(x∗))sk‖

‖sk‖ = 0,

then the sequence{xk} converges superlinearly tox∗.

Proof. Let us assume thatxk ∈ B(x∗, ε1) for all k. By the considerations made in (3),

∥∥(Ak − F ′(x∗))sk∥∥=
∥∥∥∥∥∥∥
 [Ak]1− f

′
1(x
∗)

...

[Ak]n − f ′n(x∗)

 sk
∥∥∥∥∥∥∥ . (14)

SinceB∗ is the matrix in∂BG(x∗) that has for theith row ei or f ′i(x∗), we have that

∥∥(Bk −B∗)sk∥∥=
∥∥∥∥∥∥∥
 [Bk]1− [B∗]1...

[Bk]n − [B∗]n

 sk
∥∥∥∥∥∥∥ , (15)

where

[Bk]i − [B∗]i =
{0 if x∗i 6 fi(x∗),
[Ak]i − f ′i (x∗) if x∗i > fi(x∗),

Thus, from (14) and (15),∥∥(Bk −B∗)sk∥∥6 ∥∥(Ak −F ′(x∗))sk∥∥.
Now by (13), we have

0=Bksk +G(xk),
(16)−G(xk+1)= (Bk −B∗)sk −G(xk+1)+G(xk)+B∗sk.

Observe that to compute‖−G(xk+1)+G(xk)+ B∗sk‖ we work componentwise and so we can use the
fact thatF ′(x) is Lipschitz continuous with constantγ . Using this observation and (16) we get

‖G(xk+1)‖
‖sk‖ 6 ‖(Ak − F

′(x∗))sk‖
‖sk‖ + ‖−G(x

k+1)+G(xk)+B∗sk‖
‖sk‖

6 ‖(Ak − F
′(x∗))sk‖
‖sk‖ + γ max

{∥∥xk+1− x∗∥∥,∥∥xk − x∗∥∥}.
Since

lim
k→∞
‖(Ak −F ′(x∗))sk‖

‖sk‖ = 0 and lim
k→∞

(
xk − x∗)= 0,

we have

lim
k→∞
‖G(xk+1)‖
‖sk‖ = 0.

But, by Lemma 2.2, there exists a positive constantβ such that

lim
k→∞
‖G(xk+1)‖
‖sk‖ > lim

k→∞β
‖xk+1− x∗‖
‖sk‖ .
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So,

0> lim
k→∞β

‖xk+1− x∗‖
‖xk − x∗‖ + ‖xk+1− x∗‖ = lim

k→∞β
‖xk+1− x∗‖/‖xk − x∗‖

1+ ‖xk+1− x∗‖/‖xk − x∗‖ ,
which implies

lim
k→∞
‖xk+1− x∗‖
‖xk − x∗‖ = 0,

and thus,xk converges tox∗ superlinearly. 2

2.3. LCSU family forG(x)= 0

The least-change theory, which is well established for smooth and also for some nonsmooth
problems [10,13,14], states sufficient conditions under which the hypotheses of the Theorem 2.1 hold.

In this section we define a least-change algorithm for problems like (1) satisfying assumptions (A1)–
(A3) and we prove the corresponding local convergence theorems.
| · | will denote an arbitrary norm onRn and its associated matrix norm.
Assume that for each pairx, y ∈Rn, x 6= y, V (x, y) is a linear subspace ofE=Rn×n and‖ ·‖xy is the

norm onE related to the scalar product〈 , 〉xy.Moreover, assume that‖ · ‖ is a norm onE associated to a
scalar product〈 , 〉 and letPxy be the orthogonal projection onV (x, y) with respect to the norm‖ · ‖xy.
Algorithm 2.1. Assume thatx0 andA0 are arbitrary. Fork = 0,1,2, . . . , xk+1, Ak+1 are generated as
follows:

xk+1= xk −B−1
k G

(
xk
)
, (17)

Ak+1=Pxkxk+1(Ak), (18)

whereBk is taken following (3) and (4).

In addition to (A1)–(A3), we will assume, as in [12], that:
(A4) There existsα1> 0 such that, for allx, y ∈Rn, there exists a matrixA ∈ V (x, y) satisfying∥∥A− F ′(x∗)∥∥6 α1σ(x, y), (19)

whereσ(x, y)=max{|x − x∗|, |y − x∗|}.
(A5) There existsα2> 0 such that, for allx, y ∈Rn, A ∈ E,

‖A‖xy 6 [1+ α2σ(x, y)
]‖A‖, (20)

‖A‖6 [1+ α2σ(x, y)
]‖A‖xy. (21)

In the next lemma we prove a result, known as a Bounded Deterioration Principle, which ensures that
the distance betweenPxy(A) andF ′(x∗) cannot be much larger than that betweenA andF ′(x∗).

Lemma 2.3. Let the assumptions(A1)–(A5) be verified. There existα3, α4 > 0 such that for allx, y ∈
B(x∗, ε1), A ∈ E,∥∥Pxy(A)−F ′(x∗)∥∥6 [1+ α4σ(x, y)

]∥∥A−F ′(x∗)∥∥+ α3σ(x, y).

Proof. The proof is analogous to the proof of [12, Lemma 3.1].2
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Corollary 2.1. There existsα5> 0 such that∥∥Pxy(A)−F ′(x∗)∥∥6 ∥∥A− F ′(x∗)∥∥+ α5|x − x∗|, (22)

whenx, y ∈ B(x∗, ε1), A ∈ B(F ′(x∗), δ1) and |y − x∗|6 |x − x∗|.

Proof. The proof is analogous to the proof of [12, Corollary 3.1].2

These two results and the assumptions (A1)–(A3) are of fundamental importance to prove the next
linear convergence result for Algorithm 2.1.

Theorem 2.3. Let assumptions(A1)–(A5) be verified and consider the sequence{Ak} defined by(18).
Givenr ∈ (0,1) there existε andδ such that, if∥∥x0− x∗∥∥∞ 6 ε and

∥∥A0− F ′(x∗)
∥∥6 δ,

the sequencexk generated by

xk+1= xk −B−1
k G

(
xk
)
,

is well defined, converges tox∗ and, for allk = 0,1,2, . . .∥∥xk+1− x∗∥∥∞ 6 r∥∥xk − x∗∥∥∞.
Moreover, for allk, j = 0,1,2, . . . there exist positive numbersα6 andα7 such that:∥∥Ak+j −F ′(x∗)∥∥6 ∥∥Ak − F ′(x∗)∥∥+ α6

∣∣xk − x∗∣∣, (23)∥∥Ak+j −F ′(x∗)∥∥26
∥∥Ak −F ′(x∗)∥∥2+ α7

∣∣xk − x∗∣∣. (24)

Proof. It is very similar to that of Theorem 3.3 and Corollary 3.2 in [12]. We observe though that in
this proof we use Lemma 2.1 which was proved before using both norms| · | and‖ · ‖ as‖ · ‖∞. So,
we must be careful in the choice ofε andδ here. For instance, we need‖A0− F ′(x∗)‖6 δ implying in
‖A0− F ′(x∗)‖∞ 6 δ1. After making the right choices, the proof follows in a straightforward way.2

Theorem 2.4. Assume the same hypotheses of Theorem2.3. Then,

lim
k→∞‖Ak+1−Ak‖ = 0. (25)

Proof. It follows the lines of that of [12, Theorem 3.2], with the same remarks that we made in
Theorem 2.3. 2

With this result we can derive a necessary and sufficient condition to have superlinear convergence as
shown by the next theorem.

Theorem 2.5. Assume that the assumptions(A1)–(A5) are verified and let the sequences{Ak} and{xk}
be generated by Algorithm2.1, withBk generated as in(3). Assume that

lim
k→∞x

k = x∗.
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If

lim
k→∞
‖(Ak+1− F ′(x∗))sk‖

‖sk‖ = 0, (26)

then the sequence{xk} converges superlinearly tox∗.

Proof. The proof follows in a straightforward way from Theorems 2.2 and 2.4:

lim
k→∞
‖(Ak −F ′(x∗))sk‖

‖sk‖ 6 lim
k→∞

[‖(Ak −Ak+1)s
k‖

‖sk‖ + ‖(Ak+1−F ′(x∗))sk‖
‖sk‖

]
. (27)

From Theorem 2.4, we have that the right-hand side expression of the last inequality is equal to zero. So,

lim
k→∞
‖(Ak −F ′(x∗))sk‖

‖sk‖ = 0

and by Theorem 2.2 the convergence tox∗ is superlinear. 2

All the results obtained in this section can be incorporated in the following theorem:

Theorem 2.6. Assume that the assumptions(A1)–(A5) are verified and let the sequences{Ak} and{xk}
be generated by Algorithm2.1, withBk generated as in(3). Givenr ∈ (0,1) there existε andδ such that,
if

‖x0− x∗‖∞ 6 ε and
∥∥A0−F ′(x∗)

∥∥6 δ,
the sequencexk is well defined and converges linearly tox∗.

Moreover, if

lim
k→∞
‖(Ak+1− F ′(x∗))sk‖

‖sk‖ = 0,

then the convergence is superlinear.

Thus, we have seen that the family of LCSU methods generates sequences that are locally and
superlinearly convergent.

3. The theory forΦ(x)= 0

For the reformulation of the NCP given by (2) it is generated a family of Least-Change Secant-Update
(LCSU) methods, as in Section 2.

Givenx0 ∈Rn an initial approximation tox∗, the basic algorithm for this formulation is given by

xk+1= xk −B−1
k Φ

(
xk
)
,

where

Bk =
 ([Bk]1)...

([Bk]n)

 , (28)
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with

[Bk]i =



(
xki

‖(xki , fi(xk))‖2
− 1

)
ei +

(
fi(x

k)

‖(xki , fi(xk))‖2
− 1

)
[Ak]i ,

xki 6= 0 orfi(xk) 6= 0,(
zki

‖(zki , 〈[Ak]i , zk〉)‖2
− 1

)
ei +

( 〈[Ak]i , zk〉
‖(zki , 〈[Ak]i ), zk〉)‖2

− 1
)
[Ak]i ,

xki = fi(xk)= 0.

(29)

Here{e1, . . . , en} is the canonical basis ofRn,

Ak =
 ([Ak]1)...

([Ak]n)


is an approximation of the Jacobian matrix ofF atxk andzk ∈Rn is such thatzki 6= 0, if xki = fi(xk)= 0.

As pointed out in Section 1, the functionΦ is nondifferentiable atx, if for some i, 16 i 6 n,
xi = fi(x) = 0. Facchinei and Kanzow [3] give a procedure to calculate elements of∂BΦ(x) in these
cases. They construct a sequence of points whereΦ is differentiable and such that the sequence of the
Jacobian matrices at these points converges to a matrix belonging to∂BΦ(x). The sequence that they
propose is

yk = x + εkz,
where{εk} is a sequence of positive numbers that converges to zero andz is the vector such thatzi 6= 0 if
xi = 0 like zk in (28).

It follows from the results of [3] that defining

yk = x∗ + εkz,
wherex∗ is a solution of the NCP, then the matrixB∗(z) belongs to∂BΦ(x∗), where fori = 1, . . . , n,

[B∗(z)]i =

−ei if 0 = x∗i < fi(x∗),
−f ′i (x∗) if x∗i > fi(x∗)= 0,

(α∗i − 1)ei + (β∗i − 1)f ′i (x∗) if x∗i = fi(x∗)= 0,

(30)

with

α∗i =
zi

‖(zi, 〈f ′i (x∗), z〉)‖2
and β∗i =

〈f ′i (x∗), z〉
‖(zi, 〈f ′i (x∗), z〉)‖2

.

Actually, these matricesB∗(z) form a (generally infinite) compact subsetZ∗ of ∂BΦ(x∗), since there are
infinite many ways to choose the vectorz ∈Rn. This set is given by

Z∗ = {B∗(z): z ∈Rn is such thatzi 6= 0, if x∗i = fi(x∗)= 0
}
. (31)

The algorithm for the LCSU family forΦ(x)= 0 is given by:

Algorithm 3.1. Assume thatx0 ∈ Rn andA0 is arbitrary. Fork = 0,1, . . . , n, let the sequencesxk and
{Ak} be generated by
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xk+1= xk −B−1
k Φ

(
xk
)
, (32)

Ak+1= Pxk,xk+1(Ak), (33)

andBk is computed following (27) and (28).

As in Section 2,| · | will denote an arbitrary norm onRn and its associated matrix norm and we will
assume that for each pairx, y ∈Rn, x 6= y, V (x, y) is a linear subspace ofE= Rn×n and‖ · ‖xy is the
norm onE related to the scalar product·, ·xy. Moreover, assume that‖ · ‖ is a norm onE associated to a
scalar product·, · and letPxy be the orthogonal projection onV (x, y) with respect to the norm‖ · ‖xy.

The five analogous local assumptions for this formulation are given by:
(H1) x∗ ∈Rn is such thatΦ(x∗)= 0.
(H2) There existγ > 0, ε > 0, such that∥∥F ′(x)− F ′(x∗)∥∥6 γ |x − x∗|,

for all x ∈ B(x∗, ε̃) .
(H3) All the matrices inZ∗ are nonsingular.
(H4) There existsα1> 0 such that for allx, y ∈Rn there exists a matrixA ∈ V (x, y) satisfying∥∥A− F ′(x∗)∥∥6 α1σ(x, y), (34)

whereσ(x, y)=max{|x − x∗|, |y − x∗|}.
(H5) There existsα2> 0 such that for allx, y ∈Rn, A ∈ E,∥∥A‖xy 6 [1+ α2σ(x, y)

]‖A‖, (35)

‖A‖6 [1+ α2σ(x, y)
]‖A‖xy (36)

Under these local assumptions, the same convergence results as those obtained in Section 2 are proved.
The details of the proofs are given in [17].

4. The nonsingularity assumption

One of the assumptions under which we developed the LCSU theory is the BD-regularity ofG at x∗,
that is, the assumption that all the elements in∂BG(x∗) are nonsingular, and the nonsingularity of the
matrices inZ∗ ⊂ ∂BΦ(x∗). Since anyB ∈ ∂BG(x∗) can be written as−B ∈ Z∗ if we takeα = 1, β = 0;
then we have∂BG(x∗)⊂Z∗ and so, if all the elements inZ∗ are nonsingular, thenG is BD-regular atx∗.
But it is not true that if all the elements in∂BG(x∗) are nonsingular, then all the elements in∂BΦ(x∗)
are nonsingular. This is shown in this very simple example:

Example 4.1. Define

F :R2→R2, x 7→ F(x)= (x1+ 3x2− 1, x1+ x2− 1).

x∗ = (1,0) is a degenerate solution of the NCP, since

x∗1 > f1(x
∗)= 0, x∗2 = f2(x

∗)= 0.

Thus,

∂BG(x
∗)=


 1 3

0 1

 ,
1 3

1 1

 ,
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with both elements nonsingular. As was seen in Section 3, in this case the elements ofZ∗ ⊂ ∂BΦ(x∗) are
given by

B =
−1 −3

(α− 1)e2+ (β − 1)(1,1)

 ,
with α2+ β2= 1, where

α= z2

‖(z2, 〈f ′2(x∗), z〉)‖2
= z2

‖(z2, z1+ z2)‖2 ,

β = 〈f ′2(x∗), z〉
‖(z2, 〈f ′2(x∗), z〉)‖2

= z1+ z2

‖(z2, z1+ z2)‖2 ,
andz ∈R2 is such thatz2 6= 0, sincex∗2 = f2(x

∗)= 0.
For z= (1,3),‖(z2, z1+ z2)‖2= 5 and

B =
−1 −3(3

5 − 1
)
e2+ (4

5 − 1
)
(1,1)

= (−1 −3
−1

5 −3
5

)
,

which is a singular matrix. So, there exists at least one singular element inZ∗ ⊂ ∂BΦ(x∗).
Theorem 4.1 gives necessary and sufficient conditions for the casen= 2 to have singular elements in

Z∗ ⊂ ∂BΦ(x∗) under BD-regularity ofG atx∗.
We recall that, forn= 2, the set∂BG(x∗) is given, forp 6= 0, by

∂BG(x
∗)=


 ∂f1(x

∗)
∂x1

∂f1(x
∗)

∂x2

0 p

 ,

∂f1(x

∗)
∂x1

∂f1(x
∗)

∂x2

∂f2(x
∗)

∂x1

∂f2(x
∗)

∂x2


 . (37)

Theorem 4.1. Let n = 2, F :R2→ R2, F ∈ C1(R2), G andΦ be defined as in(1) and (2). If G is
BD-regular atx∗, then there will be singular elements inZ∗ ⊂ ∂BΦ(x∗) if and only if
• ∂f1(x

∗)/∂x1 and determinant of the second matrix in(37) have opposite signs,
• p < 0 in (37).

Proof. See [17]. 2

For the generic case, i.e., forF :Rn→Rn, n > 2, F ∈C1, let x∗ be a degenerate solution of the NCP.
The analysis of this case gives us similar conditions to those of the casen= 2.

Based on these results we can expect a better local numerical performance of the Min function
reformulation of problem (1). In the next section we discuss this fact with more detail.

5. Some numerical experiments

In this section we analyze the sensitivity of the functionsG andΦ to degenerate solutions of the NCP.
We do this by taking the functions defined in [7], i.e.,
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F :Rn→Rn, x 7→ F(x)= (f1(x), . . . , fn(x)
)
,

where

fi(x)=
{
hi(x)− hi(x∗) if i is odd ori > n/2,

hi(x)− hi(x∗)+ 1 otherwise.

For all these functions the vectorx∗ = (1,0,1,0, . . .) ∈ Rn is a solution. Fori = 1, . . . , n, hi are the
functions given by Lukšan [11]. In these casesF is nonsmooth atx∗, since, ifi is even andi > n/2 we
have

fi(x
∗)= x∗i = 0.

Thus,x∗ is a degenerate solution of the NCP and it is also a solution of the nonlinear systemsG(x)= 0
andΦ(x)= 0. To compare the sensitivity we worked with the problems of [11], fixing a value forn. For
each problem we calculated the maximum condition number of the matrices in∂BG(x

∗) for the Min
function and we maximized the condition number of the elements ofZ∗ as a function ofz, for the
Fischer function.

To run the test problems we used MATLAB and worked on a Sun Sparc station 2. The first column of
Table 1 shows which problem has been tested and the second one, shows then we fixed.

With the results given in the Table 1 we conclude that the Fischer function is much more sensitive
to degeneracies at a solutionx∗ than the Min function and this will affect the local convergence of the
method that uses the Fischer reformulation of problem (1). In other words, in degenerated problems, if for
both reformulations convergence takes place, the convergence of the Fischer reformulation is expected
to be slower than that of the Min reformulation.

In what follows we analyze the local behavior of the algorithms proposed in Sections 2 and 3. All the
tests were done using MATLAB. We used the 17 test problems proposed in [7] for both cases and we
tested the generalized Newton method and the generalized Schubert method for all of them.

We recall that in the Schubert method the matrices are updated in the following way:
For yk = F(xk+1)− F(xk), let vk = yk −Aksk andwk = ŝk , whereŝk means the vector derived from

sk by settingskj to zero whenever the corresponding element of[Ak]i is a known constant. Then

Ak+1=Ak + Ck

〈ŝk, ŝk〉 ,

whereCk is the matrix with elementscij = viwj .
The stopping criteria used were:
• ‖G(xk)‖2<√n10−5 for Algorithm 2.1,
• ‖Φ(xk)‖2<√n10−5 for Algorithm 3.1,
• k > 100,
• ‖G(xk)‖∞ > 1020 for Algorithm 2.1,
• ‖Φ(xk)‖∞ > 1020 for Algorithm 3.1.
The results for these numerical experiments are shown in Table 2. In all the problems the initial

approximation vector was the vector(0.9,0.1, . . . , ). Prob means the number of the problem from [11]
that was tested, Dim is the dimension of the problem and each one of the other columns tells what
happened in terms of convergence: a number means how many iterations were performed to converge to
the solution that we were looking for; a – sign means divergence andk∗ means that ink iterations the
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Table 1
The maximum condition number of the matrices in∂BG(x∗) for the Min function and
a maximization of the condition number for the Fischer function

Prob Dim Min Fischer

1 6 28.37 ∞

2 6 38.45 ∞

3 10 5.50 ∞

4 6 15.63 22.34

5 7 ∞ ∞

6 6 ∞ ∞

7 6 33.00 ∞

8 6 35.01 ∞

9 6 34.18 1.83× 1018

10 6 35.37 48.55

11 6 50.08 ∞

12 8 256.20 ∞

13 8 76.90 253.86

14 6 38.47 2.19× 1019

15 6 25.58 31.89

16 6 7.23 13.23

17 6 10.93 2.98× 1018

process converged to another solution. Since problem 6 from [11] does not satisfy the assumption (3) of
the theories developed in Sections 2 and 3, we did not consider it.

The results in Table 2 show that, for this set of experiments, the local behavior of the method that
uses the Min function is slightly better than that of the the method that uses the Fischer function. This
was observed also in [9] from numerical experiments and the authors use this observation to introduce a
globalizing strategy.
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Table 2
The performance of the generalized Newton’s and Schubert’s methods

Prob Dim Newton Newton Schubert Schubert

Min Fischer Min Fischer

1 100 3 4 3 6

2 100 4 5 3 6

3 10 – – – –

4 100 3 4 4 4

5 101 – – – –

7 100 4 4 4 6

8 100 3 4 6 –

9 100 5 4 6 6

10 100 4 4 7 7

11 100 1∗ – 1∗ –

12 100 1∗ 6∗ – –

13 100 – – – –

14 100 – – – –

15 100 15 17 – –

16 100 2 4 2 4

17 100 5 5 6 6

6. A globalizing strategy

In this section we present a global algorithm to solve the NCP. This is an hybrid algorithm like the one
proposed in [7] that combines the good local behavior of the Min function with the global behavior of
the Fischer function.

We start the iterations with the local method which uses the Min function and continue with it while
the value of‖G(x)‖ is decreasing. If it does not decrease we use the global minimization algorithm
proposed in [2,9] forλ= 2, to solve the NCP.
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We also present some numerical results of our algorithm and compare them with the results that we
obtained using the algorithm proposed in [2].

We will call the local iterationxk+1= xk−Bk−1G(xk) anordinary iteration, and an iteration generated
by the global minimization algorithm, will be called aspecial iteration.

Ordinary and special iterations are combined following [7] in this hybrid algorithm.
For eachk ∈N, let

wk = argmin
{∥∥G(x0)∥∥, . . . ,∥∥G(xk)∥∥}.

For the sake of completeness we define‖G(wj)‖ = ‖G(x0)‖ if k < j .

Algorithm 6.1. Initialize k ← 0, FLAG← 1. Let q > 0 be an integer,γ ∈ (0,1) and the initial
approximationx0 be given.

Step0. k← 0, FLAG← 1.
Step1. If FLAG= 1, obtainxk+1 using an ordinary iteration.

Otherwise, obtainxk+1 using a special iteration.
Step2. If ‖G(xk+1)‖6 γ ‖G(wk−q)‖, setFLAG← 1, k← k + 1 and go to Step 1.

Otherwise, re-definexk+1←wk+1, FLAG←−1, k← k+ 1 and go to Step 1.

6.1. Numerical performance

We tested Algorithm 6.1 with the problems suggested in [11] with the same initial approximations.
The parameters used were:γ = 0.9, q = 5, and, for the special iterations,ρ = 10−8, β = 0.5, σ =
10−4, p = 2.1 andtmin= 10−12.

These are the stopping criteria used:
• ‖G(xk)‖2<√n10−5,
• k > 100, and
• tk < tmin in the special iterations.
Table 3 presents the results when we applied to the problems in [11], Algorithm 6.1 (Min-Fischer) and

the Global Algorithm from [2] that uses only the Fischer function (Fischer). Prob means the number of
the problem from [11] that was tested, Dim is the dimension that we used for it. The columns Min-Fischer
and Fischer contain the total number of iterations performed. A – sign means divergence andk∗ means
that ink iterations the process converged to another solution. Since problem 6 from [11] does not satisfy
the assumption (3) of the theories developed in Sections 2 and 3, we did not consider it.

We observe in Table 3 that, in most cases of convergence of both algorithms, Algorithm 6.1 takes less
iterations than the other one, and we notice that, for problem 14 our algorithm attained convergence in
12 iterations while the other failed. In fact these experiments show that the globalizing strategy that uses
the hybrid algorithm is more effective.

7. Final remarks

The technique of reducing nonlinear complementarity problems to nonlinear systems of equations is
very important for solving this type of problems because, in this way, the main work of most iterations is
the resolution of a single linear system. In the Newtonian approach, the matrix of this system is a Jacobian
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Table 3
Comparison between the Global Algorithm 6.1 and a Global Algorithm
that uses only the Fischer function

Prob Dim Min-Fischer Fischer

1 100 4(4,0) 6

2 100 6(1,5) 29

3 100 – –

4 100 10∗ (7,3) 13∗

5 101 – –

7 100 – –

8 100 – –

9 100 – –

10 100 6(6,0) 7

11 100 1(1,0) 4

12 100 23(9,14) 13

13 100 11(6,5) 11

14 100 12(7,5) –

15 100 – –

16 100 4∗ (4,0) 6∗

17 100 7(7,0) 7

and the exact solution is required, while in the inexact-Newton framework, only an approximate solution
is necessary. In this paper, we considered the quasi-Newton approach, that can be very useful when the
derivatives of the system are very expensive or difficult to obtain.

The fact that, ultimately, an iteration consists on the resolution of a linear system together with only
one functional evaluation is associated to the possibility of obtaining high convergence rates (generally,
superlinear convergence) of pure local methods. Globalization procedures are usually devised in such a
way that global iterations coincide with local iterations in a neighborhood of the solution, so that fast
local convergence is maintained.
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However, fast local convergence usually depends on characteristics of the problem, the main of which
is the nonsingularity of the (generalized) Jacobians of the nonlinear system at the solution considered.
De Luca et al. [2] showed that, when one uses the nonlinear system induced by the componentwise
application of the Fischer function, the nonsingularity of the generalized Jacobians is not directly
associated to degeneracy of the solution. In other words, nonsingular generalized Jacobians can be
encountered at degenerate solutions, so that fast convergence can be expected even in these cases. It
is easy to show that the same result holds for the classical Min function considered in this paper and for
the generalizations of the Fischer function introduced in [9]. The sum of squares of the Fischer-related
system is smooth, therefore globally convergent methods related to its minimization can be developed.
Unhappily, this is not the case of the Min function.

On the other hand, it has been shown in this paper that singular generalized Jacobians can appear at
degenerate solutions of the nonlinear complementarity problem when one uses the Fischer system, as a
result of the algebraic form of this two-variable function. To understand geometrically why this happens,
consider the two-dimensional complementarity problem defined byf1(x1, x2) = x1 + 2x2 − 1 and
f2(x1, x2)= x1+ x2− 1, which has the nondegenerate solution(0,1) and the degenerate solution(1,0).
In a neighborhood of(1,0) the Min system is formed by the linex1 + 2x2 − 1= 0 and the piecewise
linear “curve” min{x2, x1+x2−1} = 0. Therefore, the level sets of the two Fischer functions involved are
smooth approximations of the level sets of−(x1+ 2x2− 1) and−min{x2, x1+ x2− 1}. It is easy to see,
geometrically, that the set of points at which the level sets of the first Fischer function are tangent to the
level sets of the second one form a continuous curve that emanates from(1,0). Obviously, the Jacobian
of the Fischer system is singular at all the points of this curve and, so, there is a singular generalized
Jacobian at(1,0). Clearly, this phenomenon does not occur in the case of the Min function. (In the
Min system the set of generalized Jacobians is formed by two nonsingular matrices.)

The observations above seem to indicate that the development of Newton-like local theories for
the Min system can be a useful tool to understand the behavior of practical methods. In this paper
we developed the Least-Change Secant-Update theory for quasi-Newton methods based on secant-
like projections. (Newton and inexact-Newton theories are mere applications of existing theories for
semismooth systems.)

Finally, the association between locally convergent methods and globally convergent ones should
be considered. Here we suggested to combine local strategies based on the Min function with global
strategies based on the Fischer function like the ones developed by [7]. Preliminary computational results
seem to show that this combination is worthwhile. However, much research is necessary along these lines
both from the theoretical and the practical point of view.
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