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Abstract

A family of Least-Change Secant-Update methods for solving nonlinear complementarity problems based on
nonsmooth systems of equations is introduced. Local and superlinear convergence results for the algorithms
are proved. Two different reformulations of the nonlinear complementarity problem as a nonsmooth system
are compared, both from the theoretical and the practical point of view. A global algorithm for solving the
nonlinear complementarity problem which uses the algorithms introduced here is also presented. Some numerica
experiments show a good performance of this algorithrh999 Elsevier Science B.V. and IMACS. All rights
reserved.
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1. Introduction

Let F:R" - R", F(x) = (fi(x), fo(x),..., fu(x)) be a continuously differentiable mapping. The
nonlinear complementarity problem (NCP) consists of finding a veetar R” such thatx > 0,
F(x) > 0, (x, F(x)) = 0. Variational inequalities problems, linear complementarity problems, mixed
complementarity and horizontal complementarity problems are related with the NCP. The NCP appears
in many problems of Physics and Economy (see [4,6,15]). In the last few years, much work has been
done with the aim of finding efficient Newton-type algorithms to solve the NCP, trying to find merit
functions whose minimizers agree with the solutions of the NCP and also seeking methods with good
local convergence rate (see [8]). A well-known way to deal with the NCP is to reformulate it as a
nonsmooth nonlinear system of equations. See [16] and references therein. In [19] a quasi-Newton
approach for nonsmooth nonlinear equations is proposed:

G(x) =min{x, F(x)}, (1)
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where min is taken componentwise (see [16]). It is easy to verifyithata zero ofG if and only if x
solves the NCP. If there existsuch thaty; = f;(x), the functionG may be nonsmooth at The second
function is the Burmeister—Fischer functign: R" — R” defined by

(p(x) = (QO(X]_, fl(—x))’ (/’(xz, fZ(x))’ LR gp(xn, fn(X))), (2)

whereg :R? — R is given by

e, ) =[x, Y|, —x —y.

See [5].

This function is such thap(x, y) =0 ifand only ifx > 0, y > 0 andxy = 0 and so it is obvious that
the NCP is equivalent to solving the nonlinear system) = 0. If there exists such that;; = f;(x) =0,
we also have that the functio® is honsmooth at. The functionG will be called here the “Min
function” while @ will be called the “Fischer function”. In this work we develop and analyze methods
to solve the NCP using systems (1) and (2). In both cases we develop a family of Least-Change Secant:
Update (LCSU) methods, following the lines of [12]. For these families we prove local and superlinear
convergence under suitable assumptions.

This work is organized as follows. In Section 2 we state the main assumptions, we prove some
consequences and we develop the LCSU theory for the Min function. In Section 3 we state similar
hypotheses under which the same results hold for the Fischer function. Section 4 is dedicated to show
that the assumption of BD-regularity of at x* made in Section 2 is not equivalent to the assumption
of @ having all the elements nonsingular in a subBetof 0@ (x*) made in Section 3. In Section 5
we present some numerical results which show the sensitivity of the Fischer function to degeneracy. We
also present the numerical performance of both formulations when applied to 16 test problems given
in [7]. In Section 6 we present a globalizing strategy to solve the NCP which take the ideas of the hybrid
algorithm given in [7], using the global algorithm given in [2]. We present the results of some numerical
experiments which show a good performance of our algorithm. Section 7 contains some remarks on what
we have done in this paper and presents some possibilities for future work.

A few words about notation. Given a matit € R"*" we denote byM]; its ith row. We will denote
the Jacobian matrix of atx by F'(x).

0 f; 0 f;
<ax1 x),..., ox, (x))

is denoted byf/(x) andB(x, ¢) means the open ball centeredvawith radiuse.
We finish this section recalling some concepts which we use in the text (see [1,16,18]).

Definition 1.1. Let H :R" — R”" be a locally Lipschitzian function and I&y denotes the set whedé
is differentiable. For alk € R", the set given by

dsH () ={ lm H'(x*): x* € Dy},

is called the generalizeH-Jacobian off atx.

Definition 1.2. The convex hull o©z H (x) is calledd H (x).
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Definition 1.3. Let H :R” — R” be locally Lipschitzian at € R". We say thaG is semismooth at if
lim vy
VedH(x+1y)
y' =y, 110

exists for everyy € R”.

Definition 1.4. We say that a semismooth functidgh: R" — R” is BD-regular atx if all elements in
0p H (x) are nonsingular.

2. Alocal convergence theory forG(x) =0
2.1. Introduction

In this section we present a family of LCSU methods for soluihg) = 0, whereG is given by (1),
and we prove that the algorithms are locally and superlinearly convergent. &iverR” an initial
approximation to the solution of the problem, the basic quasi-Newton algorithm appligd Ye= 0 will
be given by

oKL — ek Bk—lG(xk)’
where each row oB; is given by
e if xk < fi(xb),
[Bili = q [Acli if xlk > fi(xk)v 3
e; or[Al; if xF= fi(xb).
Here{ey, ..., e,} is the canonical basis @&" and
[Ax]1
Ak =
[Ak]n
is an approximation of the Jacobian matrixfofat x*. Most times, the matrix,_ 1 is obtained fromA,
using secant updates.

2.2. Local assumptions and convergence results

Under the following assumptions we will prove that the sequences generated by the basic quasi-
Newton algorithm of Section 2.1 are well defined and converge linearly to a solutiGgf= 0.

(A1) x* e R"is such thaG(x*) =0.

(A2) There existy > 0, ¢ > 0 such that

[F'(x) = F'(x)|| < pllx — x|

for all x € B(x*,¢), where| - || denotes an arbitrary norm d®" and its associated matricial
norm.
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(A3) If

[B.ln
is such that, forali =1, ..., n,

[B.]; € {f,-/(X*), ei},
and
e if xF < fi(x®),
B ={ ) e e ()
[ i x> fi(x"),
then B, is nonsingular.

We observe thad 3G (x*) = {G'(x*)} if x* is nondegenerate and that associated to each compgnent
of x*, for whichx; = f;(x*) = 0, there are two matrices who&é rows are given by (4) idz G (x*). So,
assumption (3) means that we are assuming that the funGtimnBD-regular atc*. Since there are at
most 2" of such matrices, whene is the number of degenerate components*ofwe can defin@ > 0,

a bound ta| B, || for all of them.
The next lemma prepares the “theorem of the two neighborhoods”. Its proof follows well-known

arguments of quasi-Newton theories but is included here for the sake of completeness.
For eachk e R", A € R™" define

I'(x,A)=x—B1G®), ©))
where
[Bl1
B=| : |, with[B]; e{[Al; e}, (6)
[Bl,
and
e; if x; < fi(x),
Bl = { [A] if x> fi(x). )

As observed after (4), if; = f:(x), then[B.]; will be eithere; or [A];.
Until the end of this section} - || meang| - | o-

Lemma 2.1. Let all the local assumptions be verified anddet (0, 1). Then there exist; and§; such
that, if

lx —x*| <e1 and [|A—F'(x")|| <8,
then the function™ (x, A) is well defined, and satisfies

| (x, A) = x*|| < rllx — x|

Proof. Lete; > 0 be such that, forall=1, ..., n,
if f;(x*)>x" thenf;(x) > x;,
if f;(x*)<x’ thenf;(x) <x
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for all x € B(x*, 7). It is obvious that; exists by the continuity of. Let§; < r/(46), whered is given
by assumption (3) fof - || .

For eachx € B(x*, e1), we take A € B(F'(x*), §1) and B associated t by (6) and (7) and we
consider ind 3G (x*) the matrix B, that corresponds to the matri, that is to sayB, is the matrix in
03G(x*) that has for théth row eithere; or f;'(x*) according to theth row of the matrixB beinge;
or [A]; . Then it is easily seen that

| B — Byl < é1. (8)
So, by Banach lemmag ! exists and
187 < 2B < 2. 9
From (5), (8) and (9):
|7 (x, A) — x*|| =||(x —x*) = BT'G(x) + B"'Bu(x —x*) — B"'B.(x — x|
=||( = B7*B*)(x —x*) — B} [G(x) — G(x*) — B.(x —x")]|
<|[B7Y|[IB = B*llllx — x*| +]|G(x) — G(x*) — B.(x —x")]]]
[G(x) — G(x*) — Bi(x — xM)|

<29 {81 + b =71 10
flx — x*||
Butg;(x) — g (x*) € {x; —x], fi(x) — f;(x™)}, and, by the continuity of/;,
o (m—xt if xf < fix"),
gi(x) — gi(x )_{fi(x) — fix*) if x> fi(x®), -
. _ X; __x;k |f X;k < fi(-X*)a
[B*(X — X )]z = { fi/(x*)(x _x*) if xlfk > fl(x*) (12)

If x; = fi(x*) we can make any of the choices either in (11) or in (12), since, in this case,
min{x}, f;(x*)} =x; = fi(x*) =0.
So, from (11) and (12):

IG(x) = G(x*) = B,(x —x))| _ [F)]|
llx — x| e = x|
where
_ 0 if x* < fi(x™),
ﬂ@%{ﬁwwﬁﬁﬂ—ﬁhﬂ@—ﬁ)ﬁﬁ>ﬁ@ﬂ
Now,

IEON _ max | fi(x) — fix™) = fi (@) (x — x7)|
lx —x*||  i<isn llx — x|
and so, by the differentiability of, givenp = r/(40), there existg, > 0 such that
1G(x) = G(x*) — By(x — x¥)| <

X

’

lx —x*|| <& =

llx — x|
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Thus,

WYLA)—fW<29{

r r
+—}w—xW=ﬂu—fw

40 " 29
Therefore, the desired result is provedi

The following is the so-called theorem of the two neighborhoods. As in Lemmd| 2JLwill mean

Il Mloo-

Theorem 2.1. Let all the local assumptions be verified anddet (0, 1). Then there exist, § > 0 such
that, if

[x®—x*|| <e and A — F'(x")| <8, forallk,
the sequencéx*} generated by

= P (xk, A = x* — B{AG (x),
is well defined, converges i¢ and satisfies

[ , forallk=0,1,2,....

<t -

Proof. To prove this we just need to use an inductive argument associated to Lemmai2.1.

We observe that Theorem 2.1 proves thénear convergence of the sequenaé} in the infinity
norm. Therefore, it = ||x* — x,|| is the error related to any other norm, then< Cr¥eg whereC is a
positive constant that does not dependc@ndr is as in Theorem 2.1. Seslinear convergence holds in
any other norm.

Using similar arguments as in Lemma 2.1, it is easy to prove the following lemma:

Lemma 2.2. Assume that the assumptioidsl)—(A3) are verified. Then there exist 8 > 0 such that, if
lx —x*|| <& then

|G| = Bllx —x7|I.

Even though we have used the infinity norm to prove Lemma 2.2, the above result remains valid for
any other norm, with a suitable change in the consfant

In the next theorem we prove that, for the reformulation of the NCP by meaGigxf= 0, a Dennis—
Moré—Walker type condition ensures superlinear convergence. We use the infinity norm in this proof but
we recall that superlinear convergence results are norm-independent.

Theorem 2.2. Assume that the assumptiof#sl)—(A3) are verified and that for some® the sequence
generated by

KL = xk Bk_lG(xk), (13)
whereB, is given in(3), satisfies

lim x* = x*.
k— 00



V.L.R. Lopes et al. / Applied Numerical Mathematics 30 (1999) 3-22 9

DefineA as in(3) and sk = xk+1 — xk_ If
A, — F'(x* k
im [l (A @NsH _
k=00 (B

Ov
then the sequenda*} converges superlinearly to*.

Proof. Let us assume that € B(x*, ¢1) for all k. By the considerations made in (3),
[Axls — f1(x™)
| (Ax — F'(x*))s*|| = : skl (14)
[Akl, — [, (x")
SinceB, is the matrix ind 5 G (x*) that has for théth rowe; or f’;(x*), we have that
[Bil1 — [Bi1
|(Bx — B.)s"|| = : skl (15)
[Bil, — [Biln
where

. if xf < fi (%),
el *i_{m&—ﬂhﬂ it > S,

Thus, from (14) and (15),
[(Be — Bash| < [ (Ax — F'x)sh]|.
Now by (13), we have
0= Bis* +G(x"),
—G (x*1) = (By — B)s* — G(x*™) + G(x*) + B.s®.

Observe that to compute— G (x**1) + G (x*) 4+ B.s*|| we work componentwise and so we can use the
fact thatF’(x) is Lipschitz continuous with constapt Using this observation and (16) we get

(16)

G (x|l < [(Ax — F'(*)s* | |-G + G(x*) + Busk|
Ik 511 511
A _F/ * k
< | (Ax ” kT|x NsEl +ymax{]|xk+1—x* ’ xk—x*H}.
S
Since
. A - F/ sk k .
jim WA @S a0 im (x* —x*) =0,
k—o00 ||sk|| k—o00
we have
] G k+1
im 1GEEDI_
k—oo ||kl
But, by Lemma 2.2, there exists a positive consgastich that
] G k+1 ] k+1 %
IGEEDI g 16— ]

koo |5k ko0 lIs*I
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So,
k+1 k+1 k
: [l — x| : [l — 1/l = x|
0= lim g T = lim B I ;
koo™ Jlock — ¥ || 4 Ikt — x| koot L [l — x|/ flrk — x|
which implies
”xk+1

. —x*
lim =
k=00 ||xk — x*||

El

and thusx* converges ta* superlinearly. O
2.3. LCSU family foilG(x) =0

The least-change theory, which is well established for smooth and also for some nonsmooth
problems [10,13,14], states sufficient conditions under which the hypotheses of the Theorem 2.1 hold.

In this section we define a least-change algorithm for problems like (1) satisfying assumptions (Al)—
(A3) and we prove the corresponding local convergence theorems.

| - | will denote an arbitrary norm oR” and its associated matrix norm.

Assume that for each pait y e R", x #y, V(x, y) isalinear subspace @f=R"*" and|| - |, is the
norm onkE related to the scalar produgt).,. Moreover, assume tht || is a norm onE associated to a
scalar product, ) and letP,, be the orthogonal projection dn(x, y) with respect to the norr - || .

Algorithm 2.1. Assume that® and Ag are arbitrary. Fok =0, 1, 2, ..., x**1, A,,, are generated as
follows:

A=y — BTG (x5, 17)
Ak+l = kaxk+1(Ak), (18)
where B, is taken following (3) and (4).
In addition to (A1)—(A3), we will assume, as in [12], that:
(A4) There existsr; > 0 such that, for alk, y € R”, there exists a matriX € V (x, y) satisfying
A= F'(x")| <oro(x,y), (19)

whereo (x, y) = maxX|x — x*[, |y — x*|}.
(A5) There existax, > 0 such that, for alk, y e R”, A € E,

[ Allyy < [14 a0 (x, Y] A (20)
Al < [14 a20 (x, )] Allxy- (21)
In the next lemma we prove a result, known as a Bounded Deterioration Principle, which ensures that
the distance betweeR,,(A) and F'(x*) cannot be much larger than that betweeand F’(x*).
Lemma 2.3. Let the assumption@1)—(A5) be verified. There exists, oy > 0 such that for allx, y €
B(x*, e1), A€E,
| Pey(A) — F'(x)|| < [14 a0 (x, P)]||A = F'(x)|| + azo (x, y).

Proof. The proof is analogous to the proof of [12, Lemma 3.1f
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Corollary 2.1. There existss > 0 such that
|Pey(A) = F' (x| < [|A = F'(x)|| 4 aslx — x7], (22)

whenx, y € B(x*, &1), A € B(F'(x*),d1) and|y —x*| < |x — x™|.

Proof. The proof is analogous to the proof of [12, Corollary 3.1fa

These two results and the assumptions (A1)—(A3) are of fundamental importance to prove the next
linear convergence result for Algorithm 2.1.

Theorem 2.3. Let assumption§A1)—(A5) be verified and consider the sequerieg} defined by(18).
Givenr € (0, 1) there exist and§ such that, if
[ —x*|| , <¥ and ||[Ao— F'(x")|| <3,
the sequence; generated by
KR — ek Bk—lG(xk)’
is well defined, converges 16 and, forallk =0, 1,2, ...
[+t —

oo <l = x|

Moreover, for allk, j =0, 1, 2, ... there exist positive numbesg and a7 such that
|Aks; — F' | < ||Ar — F/(9) || + a|x — x|, (23)
Ak — F' 0O < || Ak — F/ ()| + a2 — x7). (24)

Proof. It is very similar to that of Theorem 3.3 and Corollary 3.2 in [12]. We observe though that in
this proof we use Lemma 2.1 which was proved before using both nprinand || - || as| - ||c. SO,

we must be careful in the choice ®fands here. For instance, we ne¢do — F’'(x*)|| < 8 implying in

lAg — F'(x*) |0 < 31. After making the right choices, the proof follows in a straightforward way.

Theorem 2.4. Assume the same hypotheses of The@@nThen,
Jim ([ Ags = Al =0. (25)

Proof. It follows the lines of that of [12, Theorem 3.2], with the same remarks that we made in
Theorem 2.3. O

With this result we can derive a necessary and sufficient condition to have superlinear convergence as
shown by the next theorem.

Theorem 2.5. Assume that the assumptiof#sl)—(A5) are verified and let the sequencies,} and {x¥}
be generated by Algorithi.1, with B, generated as ii(3). Assume that

lim x* = x*.
k— 00
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A _ F/ * k
i N — Fa)s)
oo 151

0, (26)
then the sequende’*} converges superlinearly to*.

Proof. The proof follows in a straightforward way from Theorems 2.2 and 2.4:
im 1A~ F'(x*)s"]| < lim [ 1A= Arr)s | | (A — F/(x)st|| '

~X
k=00 lls*1 k=00 [ lIs*I

(27)

From Theorem 2.4, we have that the right-hand side expression of the last inequality is equal to zero. So,
A, — F'(x* k
im Il (Ax s _
k=00 1]

and by Theorem 2.2 the convergencectas superlinear. O
All the results obtained in this section can be incorporated in the following theorem:

Theorem 2.6. Assume that the assumptiof#sl)—(A5) are verified and let the sequencies,} and {x¥}
be generated by Algorithi 1, with B, generated as ii3). Givenr < (0, 1) there exist ands such that,
if

Ix° = x*loe <& and [|Ag— F'(x")| <3,

the sequence, is well defined and converges linearly.ito.

Moreover, if
) A — F'(x* k
jim Ak = P
k=0 Is*

then the convergence is superlinear.

Thus, we have seen that the family of LCSU methods generates sequences that are locally anc
superlinearly convergent.

3. The theory for @(x) =0

For the reformulation of the NCP given by (2) it is generated a family of Least-Change Secant-Update
(LCSU) methods, as in Section 2.
Givenx? e R” an initial approximation ta*, the basic algorithm for this formulation is given by
Xk — xk Bk_:L@ (xk),
where
([Bkl1)
By = : ; (28)
([Bkln)
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with
xf fi (x5
e (g,
(u(xf,ﬁ-(xk))nz >e G e,
xf #0o0r f;(x*) #0,
Bili = 29
ol ( a _1)e_+< ([Ai, 2 _1>[Ak], @9
l(zE, ([Akli, DIz ' Iz, ([AR]), 2) Il v
k= fixb)=0.
Herele, ..., e,} is the canonical basis &",
([AxlD)
A=
([Axln)

is an approximation of the Jacobian matrixfoftx* andz* € R” is such thatt £ 0, if x¥ = f;(x*) = 0.
As pointed out in Section 1, the functiofh is nondifferentiable atc, if for somei, 1<i < n,
x; = f;(x) = 0. Facchinei and Kanzow [3] give a procedure to calculate elemenig®f(x) in these
cases. They construct a sequence of points witei® differentiable and such that the sequence of the
Jacobian matrices at these points converges to a matrix belongihggZtor). The sequence that they
propose is
v =x+¢z,
where{eX} is a sequence of positive numbers that converges to zergiantle vector such that # 0 if
x; = 0 like z* in (28).
It follows from the results of [3] that defining
Yo=xt 4 e,
wherex* is a solution of the NCP, then the mati (z) belongs tad z @ (x*), where fori =1, ..., n,
—e; if0=x' < fi(x¥),
[B.(2)]i = ¢ —f{(x") if x> fi(x*) =0, (30)
(f = De; + (B = D f/(x*) if xf = fi(x*) =0,
with

. Zi . (fi(x™), z)
o = / d lBi = / .
Gz, (f7 (x%), 2)l2 Gz, (f7 (x*), 2D l2
Actually, these matrices. (z) form a (generally infinite) compact subsét of 05 ® (x*), since there are
infinite many ways to choose the vectoe R”. This set is given by

Z,={B.(z): ze R"issuch that; #0, if x = f;(x*) =0}. (31)
The algorithm for the LCSU family fo® (x) = 0 is given by:

Algorithm 3.1. Assume that® € R and Aq is arbitrary. Fork =0, 1, ..., n, let the sequences' and
{Ax} be generated by
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A =x* — Blo (xF), (32)
Agy1= P r1(Ag), (33)
and By, is computed following (27) and (28).

As in Section 2/ - | will denote an arbitrary norm oR” and its associated matrix norm and we will
assume that for each pairy e R", x #y, V(x,y) is a linear subspace & =R"*" and|| - ||, is the
norm onk related to the scalar product,,. Moreover, assume thgt. || is a norm onE associated to a
scalar product, - and letP,, be the orthogonal projection dn(x, y) with respect to the normh- ||, .

The five analogous local assumptions for this formulation are given by:

(H1) x* € R" is such tha (x*) = 0.

(H2) There existy > 0, ¢ > 0, such that

|F'(x) = F'e™)|| < vl = %7,
forall x € B(x*,¢) .
(H3) All the matrices inZ, are nonsingular.
(H4) There exists; > 0 such that for alk, y € R” there exists a matriXd € V (x, y) satisfying

|A = F'(x")]| € a0 (x, ), (34)
whereo (x, y) = max{|x — x*|, |y —x*[}.
(H5) There existe, > 0 such that for alk, y e R", A € E,
|Allxy < [14 a0 (x, Y] 1AL, (35)
AN < [+ 20 (x, W] Alley (36)

Under these local assumptions, the same convergence results as those obtained in Section 2 are prove
The details of the proofs are given in [17].

4. The nonsingularity assumption

One of the assumptions under which we developed the LCSU theory is the BD-regulagitstaf,
that is, the assumption that all the element® yG (x*) are nonsingular, and the nonsingularity of the
matrices inZ, C 9@ (x*). Since anyB € 03 G(x*) can be written as-B € Z, if we takea =1, 8 = 0;
then we have® ;G (x*) C Z,. and so, if all the elements B, are nonsingular, the@ is BD-regular atx,.
But it is not true that if all the elements @R G (x*) are nonsingular, then all the elementigd (x*)
are nonsingular. This is shown in this very simple example:

Example 4.1. Define

F:R> >R’ x> FxX) =1 +3x—Lx;+x—1).
x* = (1, 0) is a degenerate solution of the NCP, since

x1 > fi(x™) =0, x5 = fo(x*)=0.
Thus,

we{(2)22)
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with both elements nonsingular. As was seen in Section 3, in this case the eleménts 0§ @ (x*) are
given by

F_[1 -3
(@—Dex+ B-DAD )’

with o + % =1, where

o= 22 _ 22
G2 (), 2Dz (z2, 2+ 22) 2
(f3(x), 2) 21+ 2

T G2 (BE Dz @+ 222’

andz € R? is such that; # 0, sincexs = fo(x*) =0.
Forz =(1,3), |[(z2, 21+ 2z2)ll2=5 and

(E-Ve+ (-1 D -1 _3)

which is a singular matrix. So, there exists at least one singular elemZptdroz @ (x*).

Theorem 4.1 gives necessary and sufficient conditions for thencas®to have singular elements in
Z, C 0@ (x*) under BD-regularity of5 at x*.
We recall that, for = 2, the seD G (x*) is given, forp # 0, by

A7) 2 (PN AR
03G(x*) = ) ) ! 2 . 37
pGO7) ( . *2 ) D) D falx®) S
axl axz

Theorem 4.1. Letn =2, F:R? - R?, F € C}(R?), G and @ be defined as irfl) and (2). If G is
BD-regular atx*, then there will be singular elementsi C 9@ (x*) if and only if

e 0f1(x*)/0x1 and determinant of the second matrix(8v) have opposite signs,

e p<0in(37).

Proof. See [17]. O

For the generic case, i.e., f6r:R” — R", n > 2, F € C%, letx* be a degenerate solution of the NCP.
The analysis of this case gives us similar conditions to those of theicase

Based on these results we can expect a better local humerical performance of the Min function
reformulation of problem (1). In the next section we discuss this fact with more detail.

5. Some numerical experiments

In this section we analyze the sensitivity of the functichand® to degenerate solutions of the NCP.
We do this by taking the functions defined in [7], i.e.,
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F:R">R", x> Fx)=(fix),..., f,(x)),

where
fi( )_{h,-(x)—h,-(x*) if i isodd ori > n/2,
= hi(x) —h;(x*) +1 otherwise.

For all these functions the vectar = (1,0,1,0,...) € R" is a solution. Foi = 1,...,n, h; are the
functions given by LukSan [11]. In these cadess nonsmooth at*, since, ifi is even and > n/2 we
have

fix*)y=x=0.

Thus,x* is a degenerate solution of the NCP and itis also a solution of the nonlinear systeimns 0
and® (x) = 0. To compare the sensitivity we worked with the problems of [11], fixing a value.fBor
each problem we calculated the maximum condition number of the matricgsGiax*) for the Min
function and we maximized the condition number of the elementg,0és a function ofz, for the
Fischer function.

To run the test problems we used MATLAB and worked on a Sun Sparc station 2. The first column of
Table 1 shows which problem has been tested and the second one, shawgetfized.

With the results given in the Table 1 we conclude that the Fischer function is much more sensitive
to degeneracies at a solutiafi than the Min function and this will affect the local convergence of the
method that uses the Fischer reformulation of problem (1). In other words, in degenerated problems, if for
both reformulations convergence takes place, the convergence of the Fischer reformulation is expectec
to be slower than that of the Min reformulation.

In what follows we analyze the local behavior of the algorithms proposed in Sections 2 and 3. All the
tests were done using MATLAB. We used the 17 test problems proposed in [7] for both cases and we
tested the generalized Newton method and the generalized Schubert method for all of them.

We recall that in the Schubert method the matrices are updated in the following way:

For y, = F(x*™1) — F(xb), let vy = y, — Agsy andwy =5, wheres, means the vector derived from
s¢ by settingsf to zero whenever the corresponding elemertAqf]; is a known constant. Then

C
Arp1=Ar + ———,
(Sks Sk)
whereCy is the matrix with elements;; = v;w;.

The stopping criteria used were:

|G (x*)]|2 < /n107° for Algorithm 2.1,
@ (x%) |2 < o/n107° for Algorithm 3.1,
k > 100,

|G (x*)||loe > 10?° for Algorithm 2.1,
@ (x*)||o > 1070 for Algorithm 3.1.

The results for these numerical experiments are shown in Table 2. In all the problems the initial
approximation vector was the vect@.9, 0.1, ..., ). Prob means the number of the problem from [11]
that was tested, Dim is the dimension of the problem and each one of the other columns tells what
happened in terms of convergence: a number means how many iterations were performed to converge t
the solution that we were looking for; a — sigh means divergencek&amdeans that irk iterations the
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Table 1
The maximum condition number of the matrice® G (x*) for the Min function and
a maximization of the condition number for the Fischer function

Prob Dim Min Fischer
1 6 28.37 o0
2 6 38.45 o0
3 10 5.50 o0
4 6 15.63 22.34
5 7 00 00
6 6 00 00
7 6 33.00 o0
8 6 35.01 o0
9 6 34.18 183 x 10'®

10 6 35.37 48.55
11 6 50.08 o0
12 8 256.20 o0
13 8 76.90 253.86
14 6 38.47 219 % 10'°
15 6 25.58 31.89
16 6 7.23 13.23
17 6 10.93 208 x 108

process converged to another solution. Since problem 6 from [11] does not satisfy the assumption (3) of
the theories developed in Sections 2 and 3, we did not consider it.

The results in Table 2 show that, for this set of experiments, the local behavior of the method that
uses the Min function is slightly better than that of the the method that uses the Fischer function. This
was observed also in [9] from numerical experiments and the authors use this observation to introduce &
globalizing strategy.
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Egze?rformance of the generalized Newton’s and Schubert’s methods
Prob Dim Newton Newton Schubert Schubert
Min Fischer Min Fischer
1 100 3 4 3 6
2 100 4 5 3 6
3 10 - - - -
4 100 3 4 4 4
5 101 - - - -
7 100 4 4 4 6
8 100 3 4 6 -
9 100 5 4 6 6
10 100 4 4 7 7
11 100 ¥ - 1* -
12 100 iy 6* - -
13 100 - - - -
14 100 - - - -
15 100 15 17 -~ -~
16 100 2 4 2 4
17 100 5 5 6 6

6. A globalizing strategy

In this section we present a global algorithm to solve the NCP. This is an hybrid algorithm like the one
proposed in [7] that combines the good local behavior of the Min function with the global behavior of
the Fischer function.

We start the iterations with the local method which uses the Min function and continue with it while
the value of||G(x)| is decreasing. If it does not decrease we use the global minimization algorithm
proposed in [2,9] foi. = 2, to solve the NCP.
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We also present some numerical results of our algorithm and compare them with the results that we
obtained using the algorithm proposed in [2].

We will call the local iteration*** = x* — B, ~1G (x*) anordinary iteration and an iteration generated
by the global minimization algorithm, will be calledspecial iteration

Ordinary and special iterations are combined following [7] in this hybrid algorithm.

For eachk € N, let

wh = argmin{ || G (x°) G(xM)[}.

For the sake of completeness we defjiggw/)|| = |G(x%) || if k < j.

EERE)

Algorithm 6.1. Initialize k < 0, FLAG < 1. Let ¢ > 0 be an integery < (0,1) and the initial
approximationt® be given.
Step0. k < 0, FLAG « 1.
Stepl. If FLAG= 1, obtainx**! using an ordinary iteration.
Otherwise, obtain*** using a special iteration.
Step2. If |G(x* || < yIGw*9)||, setFLAG < 1, k <k + 1 and go to Step 1.
Otherwise, re-defing*+! < w**!, FLAG <~ —1, k <k + 1 and go to Step 1.

6.1. Numerical performance

We tested Algorithm 6.1 with the problems suggested in [11] with the same initial approximations.
The parameters used wene:= 0.9, ¢ = 5, and, for the special iterationg,= 108, g =05, o =
1074, p = 2.1 andtyi, = 10712,

These are the stopping criteria used:

o |G|l < /n107°,

e k> 100, and

e 1 < Imin in the special iterations.

Table 3 presents the results when we applied to the problems in [11], Algorithm 6.1 (Min-Fischer) and
the Global Algorithm from [2] that uses only the Fischer function (Fischer). Prob means the number of
the problem from [11] that was tested, Dim is the dimension that we used for it. The columns Min-Fischer
and Fischer contain the total number of iterations performed. A — signh means divergericeragans
that ink iterations the process converged to another solution. Since problem 6 from [11] does not satisfy
the assumption (3) of the theories developed in Sections 2 and 3, we did not consider it.

We observe in Table 3 that, in most cases of convergence of both algorithms, Algorithm 6.1 takes less
iterations than the other one, and we notice that, for problem 14 our algorithm attained convergence in
12 iterations while the other failed. In fact these experiments show that the globalizing strategy that uses
the hybrid algorithm is more effective.

7. Final remarks

The technique of reducing nonlinear complementarity problems to nonlinear systems of equations is
very important for solving this type of problems because, in this way, the main work of most iterations is
the resolution of a single linear system. In the Newtonian approach, the matrix of this system is a Jacobian
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Table 3
Comparison between the Global Algorithm 6.1 and a Global Algorithm
that uses only the Fischer function

Prob Dim Min-Fischer Fischer
1 100 4(4,0) 6
2 100 6(1,5) 29
3 100 - -
4 100 16 (7,3 13*
5 101 - -
7 100 - -
8 100 - -
9 100 - -

10 100 6(6, 0) 7
11 100 11,0 4
12 100 23(9, 14) 13
13 100 11(6,5) 11
14 100 12(7,5) -
15 100 - -
16 100 4 (4,0 6*
17 100 7(7,0) 7

and the exact solution is required, while in the inexact-Newton framework, only an approximate solution
is necessary. In this paper, we considered the quasi-Newton approach, that can be very useful when th
derivatives of the system are very expensive or difficult to obtain.

The fact that, ultimately, an iteration consists on the resolution of a linear system together with only
one functional evaluation is associated to the possibility of obtaining high convergence rates (generally,
superlinear convergence) of pure local methods. Globalization procedures are usually devised in such «
way that global iterations coincide with local iterations in a neighborhood of the solution, so that fast
local convergence is maintained.
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However, fast local convergence usually depends on characteristics of the problem, the main of which
is the nonsingularity of the (generalized) Jacobians of the nonlinear system at the solution considered.
De Luca et al. [2] showed that, when one uses the nonlinear system induced by the componentwise
application of the Fischer function, the nonsingularity of the generalized Jacobians is not directly
associated to degeneracy of the solution. In other words, nonsingular generalized Jacobians can b
encountered at degenerate solutions, so that fast convergence can be expected even in these cases
is easy to show that the same result holds for the classical Min function considered in this paper and for
the generalizations of the Fischer function introduced in [9]. The sum of squares of the Fischer-related
system is smooth, therefore globally convergent methods related to its minimization can be developed.
Unhappily, this is not the case of the Min function.

On the other hand, it has been shown in this paper that singular generalized Jacobians can appear :
degenerate solutions of the nonlinear complementarity problem when one uses the Fischer system, as
result of the algebraic form of this two-variable function. To understand geometrically why this happens,
consider the two-dimensional complementarity problem definedfigy:, xo) = x3 + 2x, — 1 and
fo(x1, x2) = x1 + x2 — 1, which has the nondegenerate solutionl) and the degenerate soluti¢h 0).

In a neighborhood of1, 0) the Min system is formed by the ling + 2x, — 1 =0 and the piecewise

linear “curve” mir{x,, x; +x, — 1} = 0. Therefore, the level sets of the two Fischer functions involved are
smooth approximations of the level sets-afx; + 2x, — 1) and— min{x,, x1 + x» — 1}. It is easy to see,
geometrically, that the set of points at which the level sets of the first Fischer function are tangent to the
level sets of the second one form a continuous curve that emanatesglfr@nObviously, the Jacobian

of the Fischer system is singular at all the points of this curve and, so, there is a singular generalized
Jacobian at1, 0). Clearly, this phenomenon does not occur in the case of the Min function. (In the
Min system the set of generalized Jacobians is formed by two nonsingular matrices.)

The observations above seem to indicate that the development of Newton-like local theories for
the Min system can be a useful tool to understand the behavior of practical methods. In this paper
we developed the Least-Change Secant-Update theory for quasi-Newton methods based on secan
like projections. (Newton and inexact-Newton theories are mere applications of existing theories for
semismooth systems.)

Finally, the association between locally convergent methods and globally convergent ones should
be considered. Here we suggested to combine local strategies based on the Min function with global
strategies based on the Fischer function like the ones developed by [7]. Preliminary computational results
seem to show that this combination is worthwhile. However, much research is necessary along these line:
both from the theoretical and the practical point of view.
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