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Abstract.

We examine the question of the minimal Sobolev regularity required to
construct local solutions to the Cauchy problem for the isotropic Benney-
Luke (BL), isotropic p-generalized Benney-Luke (p-gBL) and generalized
Benney-Luke (gBL) equations. The main results in this work regards the
global well-posedness of the initial value problem (IVP) associated to the
(BL), the (p-gBL) and (gBL) equations in the energy space, Ḣ2(R2)∩Ḣ1(R2)×
H1(R2), the local well-posedness of IVP associated to the (gBL) in Hs(R2)×
Hs−1(R2) for 9/5 < s ≤ 2. The IVP associated to the (BL) is locally
well-posed in Hs(R3) × Hs−1(R3) for 2 < s ≤ 5/2. We also study the
Cauchy problem in the periodic case for the isotropic Benney-Luke and gen-
eralized Benney-Luke equations. In this case we have local well-posedness in
Hs(T× R)×Hs−1(T× R) and Hs(T2)×Hs−1(T2) for 2 < s ≤ 3.
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Notation

R Real numbers

∂k
xu or ux...x Partial derivative of u in the variable x of order k

B(x, r) means the open ball with center x and radio r.

If ξ is a vector in Rn then |ξ|2 = ξ2
1 + ...+ ξ2

n

‖f‖Lp(X,µ) := ‖f‖p = (
∫

X
|f |pdµ)

1
p , 1 ≤ p <∞

Hs
2(Rn) := Hs Fractional Sobolev spaces of order s real, i.e.,

Hs(Rn) := {f ∈ S ′(Rn) : (1 + |ξ|2) s
2 f̂(ξ) ∈ L2(Rn)}

‖f‖Hs := ‖(1 + |ξ|2)s/2f̂(ξ)‖L2

C([0, T ] : X) Continuous functions from [0, T ] into X

f̂(ξ) := (2π)−
n
2

∫
Rn e

−ix·ξf(x)dx Fourier Transform of f

f̌(x) := (2π)−
n
2

∫
Rn e

ix·ξf(ξ)dξ Inverse Fourier Transform of f

S(Rn) Schwartz space on Rn

Js = (1−∆)s/2 denotes the Bessel potential of order −s

|D|s = (−∆)s/2 Riesz potential of order −s

Hs
q (Rn) := J−sLq(Rn). When q=2 we will write Hs instead of Hs

2

‖f‖Hs
q

:= ‖Js · ‖q .

Ḣs
q (Rn) := |D|−sLq(Rn). Ḣs = |D|−sL2

f(x) . g(x) when exists a constant C > 0 such that f(x) ≤ Cg(x)
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Introduction.

An intermediate model for the evolution of weakly nonlinear, long water

waves of small amplitude is given by the following equation

Φtt −∆Φ + µ(a∆2Φ− b∆Φtt) + ε(Φt∆Φ + 2∇Φ · ∇Φt) = 0, (1)

where Φ(t,x) is a real valued function, (t,x) ∈ R+ × R2, R+ = [0,∞),

a, b, µ, and ε are positive real constants and ∇ and ∆ are the two-dimensional

gradient and Laplacian, respectively.

In the equation (1), so-called isotropic Benney-Luke equation (BL), Φ

is the velocity potential on the domain. After rescaling the variables, we

can suppose that the constants a and b are positive and such that a − b =

α − 1
3
6= 0, where α is the Bond number, ε (nonlinearity coefficient) is the

amplitude parameter and µ = (h0/L)2 is the long-wave parameter (dispersion

coefficient), where h0 is the equilibrium depth and L is the length scale. This

equation was first derived by Benney and Luke (see [2]) when a = 1/6 and

b = 1/2 with no surface tension (α = 0).

Pego and Quintero [27] showed that the isotropic Benney-Luke (BL) equa-

tion reduces formally to the Kadomtsev-Petviashvili (KP-I or KP-II) equa-

tion after a suitable re-normalization. Indeed, putting 2τ = εt, X = x − t,

Y =
√
εy and Φ(t, x, y) = f(τ,X, Y ), neglecting O(ε) terms we find that
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η = fX satisfies

(ητ − (α− 1

3
)ηXXX + 3ηηX)X + ηY Y = 0. (2)

We recall that if α > 1/3 this equation is KP-I, if α < 1/3 it is KP-II

and, if we suppose that f does not depend on the Y variable we obtain the

Korteweg de-Vries (KdV) equation. They also found traveling-wave solutions

of (1), i.e., solutions of the form Φ(t, x, y) =
√

µ

ε
v(x−ct√

µ
, y√

µ
) and showed that

if the wave speed c satisfies c2 < min(1, a/b) then there exists a nontrivial

finite-energy solution v, where the energy associated to v is given by

E(v) =
1

2

∫
R2

{(1+ c2)v2
x + v2

y +(a+ bc2)v2
xx +(2a+ bc2)v2

xy +av2
yy}dxdy. (3)

Quintero in [30] proved that the solitary waves are orbitally stable if the

wave speed c is near 0 or 1. He also showed in [29] the existence and analyt-

icity of the lump solution for isotropic p-generalized Benney-Luke equation

Φtt −∆Φ + µ(a∆2Φ− b∆Φtt) + ε(Φt∆pΦ + 2∇pΦ · ∇Φt) = 0, (4)

where ∇p and ∆p are given by

∇pΦ = ((∂xΦ)p, (∂yΦ)p) (5)

∆pΦ = ∇ · (∇pΦ) = ∂x(∂xΦ)p + ∂y(∂yΦ)p. (6)

From now on we will call the equations (1) and (4) as (BL) and (p-

gBL) equations, respectively . The family of isotropic Benney-Luke equations

includes the effect of surface tension and a variety of equivalent forms of

dispersion. Let us remark that the model (1) does not hold for a = b (α =

10



1/3). Paumond in [25], derived an equation that is still valid when we suppose

that α is equal or close to 1/3. More precisely,

Φtt −∆Φ +
√
ε(a∆2Φ− b∆Φtt) + ε(B∆2Φtt − A∆3Φ)

+ ε(Φt∆Φ + 2∇Φ · ∇Φt) = 0,
(7)

where ε = µ2 and the parameters A, B are linked. In [24], it was rigorously

shown that the L2(R2)-norm of the difference between the amplitude of the

wave given by equation (2) and the one given by isotropic Benney-Luke (BL)

equation is of order O(ε3/4) during a growing with ε time. Paumond in [24]

also studied the Cauchy problem{
Φtt −∆Φ + µ(a∆2Φ− b∆Φtt) + ε(Φt∆Φ + 2∇Φ · ∇Φt) = 0

Φ(0,x) = Φ0(x), Φt(0,x) = Φ1(x),
(8)

and proved that it is globally well-posedness for initial data in Hs(R2) ×

Hs−1(R2), s integer and s ≥ 2.

It is known that most water wave models are equipped with a Hamiltonian

structure. Moreover, global results concerning existence and uniqueness of

solutions for the associated Cauchy problems follow by the existence of some

conserved quantities. It is also known that the natural space to consider the

well-posedness of such initial value problems is dictated by the well definition

of either the Hamiltonian or the energy. For the problem (8), the Hamiltonian

and the energy are well defined if Φ ∈ Ḣ2(R2) ∩ Ḣ1(R2) and Φt ∈ H1(R2).

Our main purpose is to prove global well-posedness in the energy space. In

this work we also study the local regularity and the well-posedness of the

so-called generalized Benney-Luke equation{
utt −∆utt + ∆2u−m0∆u+ α0(ut∆u+ 2∇u · ∇ut) + β∇ · (|∇u|m∇u) = 0

u(0,x) = u0(x), ut(0,x) = u1(x),

(9)
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where u(t,x) is a real valued function, (t,x) ∈ R+×R2, R+ = [0,∞), m0 and

m are positive real constants, β and α0 constants. The equation (9) with

m = 2 is a model to describe dispersive and weakly nonlinear long water

waves with small amplitude. If we omit the last term on the left side of the

equation (9), one can obtain a rescaled version of the isotropic Benney-Luke

equation (1).

The notion of local well-posedness to be used here is in the sense of Kato,

that is, we will say that an initial value problem (IVP) is locally well-posed

in some functional space X, if for all initial datum φ in X, there exists a time

T > 0 and a unique solution u of the integral equation associated to the IVP

(existence and uniqueness), such that u ∈ C([0, T ];X) (persistence) and the

flow map data-solution is (at least) continuous from a neighborhood of φ in

X into C([0, T ];X) (continuous dependence). If T can be taken arbitrarily

large, we say the well-posedness is global.

It is important to remember that the solitary wave solution of the IVP

associated to (BL) equations lies in the energy space and it is orbitally stable

if the wave speed c is near 0 or 1, (see [30]).

We obtain the local well-posedness result for isotropic Benney-Luke equa-

tions using the fixed point argument and the generalized Strichartz inequal-

ities for the wave equation. We showed a similar result for the isotropic

p-generalized Benney-Luke equation (p-gBL) and generalized Benney-Luke

(gBL) equation. We also prove that the lower bound for the Sobolev ex-

ponent can be reduced from 5/2 to 2 in three space dimensions using the

Strichartz estimates and the ideas of Ponce and Sideris [28] for all equations

here considered.
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In our case if we define u such that

Φ(t,x) :=

√
µ

p
√
ε
u

(
t
√
µ
,

1
√
µ
x

)
, (10)

with Φ satisfying the isotropic Benney-Luke equation or the isotropic p-

generalized Benney-Luke equation (p = 1 or with p > 1, respectively), then

the initial value problem associated to isotropic p-generalized Benney-Luke

equation (4) is equivalent to{
(1− b∆)(utt − c2∆u) = (1− c2)∆u− Fp(∂tu,∇pu,∇∂tu)

u(0,x) = u0(x) ut(0,x) = u1(x),
(11)

where c2 =
a

b
, ui(x) =

p
√
ε

√
µ

Φi(
√
µx), i = 0, 1, x ∈ R2 and

Fp(∂tu,∇pu,∇∂tu) =p∂tu(ux)
p−1uxx + p∂tu(uy)

p−1uyy

+ 2∂tux(ux)
p + 2∂tuy(uy)

p.
(12)

We notice that the energy method and Sobolev inequalities yield local

well-posedness results in Hs(Rn) ×Hs−1(Rn) with s > n/2 + 1 for the IVP

associated to the following systems of nonlinear wave equations

−uI
tt + ∆uI = F (u,Du), (13)

where the vector u = (u1, ..., uN) depends on the variables t = x0, x1, ...xn,

Du = (∂αu
I), α = 0, 1, ..., n, I = 1, ..., N .

We also observe that Klainerman and Machedon [17], proved that if the

nonlinear terms F (u,Du) in (13) have the form

F I =
∑
J,K

ΓI
J,K(u)BI

J,K(DuJ , DuK)

where the BI
J,K are expressions of the form

Q0(φ, ψ) = −∂tφ∂tψ +
n∑

i=1

∂iφ∂iψ
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or

Qα β(φ, ψ) = ∂αφ∂βψ − ∂βφ∂αψ, 0 ≤ α < β ≤ n,

called null forms, (see [16]) then the IVP associated to (13) is locally well-

posed in Hs(R3)×Hs−1(R3) for s = 2.

The nonlinear term

(1− b∆)−1Fp(∂tu,∇pu,∇∂tu)

in the equation of the IVP (11) does not satisfy a “null condition” (see [16],

for a definition) but it is still possible to prove that the IVP (11) is locally

well-posed in Hs(R3) × Hs−1(R3) for 2 < s ≤ 5/2, in Hs(R2) × Hs−1(R2)

for s = 2 and in Ḣ2(R2) ∩ Ḣ1(R2) × H1(R2). This is possible using the

Strichartz estimates, the commutators Kato-Ponce type [14] and the ideas of

Ponce-Sideris in [28, inequality (12)].

We will consider the Cauchy problem (11) instead of the initial value

problem associated to (BL) and (p-gBL), notice that Fp is the nonlinear

term of isotropic Benney-Luke equation when p = 1.

This work is divided as follows: In the first chapter we give some pre-

liminaries, including linear estimates and Strichartz inequalities, which are

detailed in the appendix.

In the second part we will prove the results of local and global well-

posedness of the isotropic Benney-Luke equation (BL) for initial data in

H2(R2)×H1(R2) and certain local regularity of solutions, such as∇u(t), ut(t) ∈

L∞ a.e. t ∈ (0, T ). The main result, in this chapter, is the global well-

posedness in the energy space, Ḣ2(R2) ∩ Ḣ1(R2) × H1(R2). For the 3-

dimensional case the results are local in Hs(R3)×Hs−1(R3) for 2 < s ≤ 5/2
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and again some results of local regularity, as above mentioned ∇u(t), ut(t) ∈

L∞ a.e. t ∈ (0, T ).

In the third chapter we will study the initial valued problem associated

to the so called isotropic p-generalized Benney-Luke equation (p-gBL). In

particular we establish global well-posedness in the energy space.

Next, in the chapter 4 we turn out to generalized Benney-Luke equation

(9) and we prove that the associated Cauchy problem is locally well-posed

in Hs(R2)×Hs−1(R2) for 9/5 < s ≤ 2 including the case of physical interest

(m = 2). We also obtain some regularity results. As a consequence of local

results we can establish global well-posedness in the energy space, Ḣ2(R2)∩

Ḣ1(R2)×H1(R2) for β < 0.

Finally in the chapter 5, we study local well-posedness of the generalized

Benney-Luke equations in the periodic setting. We prove that the IVP asso-

ciated is locally well-posed inHs(T×R)×Hs−1(T×R) andHs(T2)×Hs−1(T2)

for 2 < s ≤ 3.
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Chapter 1

Preliminaries

Notation

The notation to be used is mostly standard. For any q ∈ [1,∞], we

denote by q′ its conjugate exponent, i.e. 1
q

+ 1
q′

= 1. Let Lq := Lq(Rn) be

the Lebesgue space, the norm on Lq is denoted by ‖ · ‖q. The homogeneous

spaces and the Sobolev spaces Ḣs
q (Rn) and Hs

q (Rn), respectively, are defined

by (−∆)−s/2Lq(Rn) and J−sLq(Rn) with J := (1−∆)1/2. We denote Ḣs
2(Rn)

and Hs
2(Rn) by Ḣs and Hs, respectively.

The norms on Ḣs
q (Rn) and Hs

q (Rn) are denoted by ‖ · ‖Ḣs
q

and ‖ · ‖Hs
q
, res-

pectively. We will use the Sobolev spaces Lr
t Ḣ

ρ
q (Rn) and Lr

T Ḣ
ρ
q (Rn) endowed

with the norm

‖u‖Lr
t Ḣρ

q
=

(∫
R
‖u(t)‖r

Ḣρ
q
dt

)1/r

, ‖u‖Lr
T Ḣρ

q
=

(∫ T

0

‖u(t)‖r
Ḣρ

q
dt

)1/r

.

Throughout this work C = 0 (independent of the data of the problem)

will stand for a constant that can change from line to line. For any positive

numbers a and b, a . b means that a 6 Cb for some constant C greater than

zero. We also denote a ∼ b when a . b and b . a.

To show our results we will use some estimates for solutions of linear
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problem and conmutators estimates as the commutators of Kato-Ponce type

[14].

1.1 Linear Estimates

The linear problem associated to (11) is{
utt −∆u+ a∆2u− b∆utt = 0

u(0, x) = f(x), ut(0, x) = g(x).
(1.1)

Let h(ξ) =

(
1 + a|ξ|2

1 + b|ξ|2

)1/2

,

̂(W (t)g)(ξ) = (|ξ|h(ξ))−1 sin (|ξ|h(ξ)t) ĝ(ξ)

and

̂(Ẇ (t)f)(ξ) = cos (|ξ|h(ξ)t) f̂(ξ).

Then a solution of{
utt −∆u+ a∆2u− b∆utt = G(u)

u(0, ·) = f(·), ut(0, ·) = g(·)
(1.2)

when a 6= b and f, g are smooth is given by

u(t) = Ẇ (t)f +W (t)g +

∫ t

0

W (t− t′)G(u)(t′)dt′. (1.3)

If a = b and f, g are smooth the solution of (1.2) is

u(t) = K̇(t)f + K(t)g +

∫ t

0

K(t− t′)(1− b∆)−1G(u)(t′)dt′, (1.4)

where {K(t)}t is the classical wave semi-group,

̂(K(t)g)(ξ) = |ξ|−1 sin(|ξ|t)ĝ(ξ)

17



with

̂(K̇(t)f)(ξ) = cos(|ξ|t)f̂(ξ),

and (1− b∆)−1G(u) is defined via the Fourier transform as

((1− b∆)−1G(u))̂(ξ) = (1 + b|ξ|2)−1Ĝ(u)(ξ).

It is clear that W (t) is bounded in L2(Rn), for all a, b > 0, since

‖W (t)g‖2 = ‖ ̂(W (t)g)(·)‖2

≤ ‖ (| · |h(·))−1 sin (| · |h(·)t) ‖∞‖ĝ(·)‖2

(1.5)

and ‖h‖∞ ≤ max{1,
√
a/b}.

Then

‖W (t)g‖2 . |t|‖g‖2. (1.6)

Moreover, for all s ≥ 0

‖W (t)g‖Ḣs ≤ max{1,
√
a/b}‖g‖Ḣs−1

‖Ẇ (t)f‖Ḣs ≤ ‖f‖Ḣs .
(1.7)

Remark 1.1.1. If we write equation (11) when p = 1 as{
(1− bc−2∆)(utt −∆u) = c−2(1− c2)∆u− c−2 (ut∆u+ 2∇u · ∇ut)

u(0,x) = u0(x), ut(0,x) = u1(x),
(1.8)

we will see that it is sufficient to have the estimates (1.6) and (1.7) for K(t).

1.2 Strichartz Estimates for K(t) and K̇(t)

The Strichartz estimates constitute the main tool used to demostrate

local regularity and establish well posedness in the energy space.

18



We are interested in the Cauchy problem for the wave equation{
utt −∆u = f

u(0,x) = u0(x), ut(0,x) = u1(x),
(1.9)

and we denote the operators ω = (−∆)1/2, and U(t) = exp(iωt), K(t) =

(ω)−1 sinωt and K̇(t) = cosωt. The Cauchy problem (1.9) is solved by

u = v + w where v is the solution of the homogeneous equation with the

same data {
vtt −∆v = 0

v(0,x) = u0(x), vt(0,x) = u1(x),
(1.10)

therefore

v(t) = K̇(t)u0 + K(t)u1 (1.11)

vt(t) = K(t)∆u0 + K̇(t)u1, (1.12)

and w is the solution for the inhomogeneous equation with zero data,{
wtt −∆w = f

w(0,x) = 0, wt(0,x) = 0.
(1.13)

Let L(t) be any of the operators ωλU(t), ωλK(t) or ωλK̇(t) with λ ∈ R and χ

be the characteristic function of R in time. We define LR(t) = χ+(t)L(t) and

LA(t) = χ−(t)L(t) where R and A stand for retarded and advanced. Then

the Cauchy problem (1.13) is solved por positive time by

w(t) =

∫ t

0

K(t− t′)f(t′)dt′ = (KR ∗t χ+f)(t). (1.14)

wt(t) =

∫ t

0

K̇(t− t′)f(t′)dt′ = (K̇R ∗t χ+f)(t). (1.15)

Similar formulas with advanced operators solve the Cauchy problem (1.13)

for negative times. We restrict our attention from now on to positive times.
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The initial data (u0, u1) for the the problem (1.9) will be taken in the

space

Y µ ≡ Ḣµ(Rn)× Ḣµ−1(Rn) (1.16)

with n ≥ 2 and µ ∈ R.

Proposition 1.2.1. If n ≥ 2, 2 ≤ r1, r2 ≤ ∞, 2 ≤ q1, q2 <∞, ρ1, ρ2, µ ∈ R

satisfy

0 ≤ 2

ri

≤ min

{
1, (n− 1)

(
1

2
− 1

qi

)}
i = 1, 2, (1.17)

(
2

ri

, (n− 1)

(
1

2
− 1

qi

))
6= (1, 1) i = 1, 2 (1.18)

ρ1 + n

(
1

2
− 1

q1

)
− 1

r1
= µ (1.19)

ρ1 + n

(
1

2
− 1

q1

)
− 1

r1
= 1−

(
ρ2 + n

(
1

2
− 1

q2

)
− 1

r2

)
, (1.20)

then the generalized Strichartz estimates for K(t) and K̇(t) are given by:

1. Let (u0, u1) ∈ Y µ ( see (1.16)). Then v define by (1.11) satisfies the

estimates

‖v‖L
r1
t Ḣ

ρ1
q1

+ ‖∂tv‖L
r1
t Ḣ

ρ1−1
q1

≤ C (‖u0‖Ḣµ + ‖u1‖Ḣµ−1) , (1.21)

2. For any interval I = [0, T ), 0 < T ≤ ∞, the function w defined by

(1.14) satisfies the estimates

‖w‖L
r1
T Ḣ

ρ1
q1

+ ‖∂tw‖L
r1
T Ḣ

ρ1−1
q1

≤ C‖f‖
L

r′2
T Ḣ

−ρ2
q′2

. (1.22)

Proof. See [10] and the appendix. �
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1.3 Nonlinear Estimates

Proposition 1.3.1. If f, g ∈ S(Rn), s ∈ Z+, then exists C = Cn,s > 0 such

that ∑
|α|=s

‖[∂α
x , f ]g‖2 =

∑
|α|=s

‖∂α
x (fg)− f∂α

x g‖2

≤C(‖∇f‖∞
∑

|β|=s−1

‖∂β
xg‖2 + ‖g‖∞

∑
|β|=s

‖∂β
xf‖2).

(1.23)

Proof. It follows by the Leibniz rule and the Gagliardo-Nirenberg In-

equality. �

Proposition 1.3.2. [ Commutators of Kato-Ponce type ] If f, g ∈

S(Rn), s ≥ 1, then there exists C = Cn,s > 0 such that

‖[Js; f ]g‖2 ≤ C(‖∇f‖∞‖Js−1g‖2 + ‖g‖∞‖Jsf‖2). (1.24)

Proof. See [14]. �

Lemma 1.3.3. If f ∈ S(R2), 2 < q <∞, σ =
9

8
+

3

4q
and 0 < s0 = 1−2

q
< 1,

then

‖f‖∞ ≤ C
(
‖f‖Ḣs0 + ‖f‖Ḣ2σ−2

q

)
. (1.25)

Proof. By Sobolev’s inequality we have

‖f‖∞ ≤C‖(1−∆)1/q+f‖q

≤C‖f‖q + C‖(−∆)1/q+f‖q

≤C‖(−∆)s0/2f‖2 + C‖(−∆)σ−1f‖q

(1.26)

since our assumptions imply that 1/q < σ − 1 we have the result. �

Lemma 1.3.4. If f, g ∈ S(R2), 2 < q <∞, s0 = 1− 2

q
and σ =

9

8
+

3

4q
then

‖[∆, f ]g‖2 ≤ C{‖∇f‖Ḣs0 + ‖(−∆)σ−1/2f‖q}‖g‖Ḣ1

+C{‖g‖Ḣs0 + ‖(−∆)σ−1g‖q}‖f‖Ḣ2 .
(1.27)
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Proof. By Proposition 1.3.1 with s = 2, we have

‖[∆, f ]g‖2 ≤ C (‖∇f‖∞‖g‖Ḣ1 + ‖g‖∞‖f‖Ḣ2) . (1.28)

An application of Lemma 1.3.3 yields the result. �

Lemma 1.3.5. If f, g ∈ S(R2). Fix 7/4 < s < 2 and let 2
4s−7

< q < ∞ and

σ = σ(s) = s
2

+ 1
8

+ 3
4q

and 0 < s0 = 1− 2
q
< 1, then

‖f‖L∞(R2) ≤ C(‖f‖Ḣs0 (R2) + ‖f‖Ḣ2σ−2
q (R2)).

Proof. By the Sobolev inequality we have

‖f‖∞ ≤ ‖(1−∆)1/q+f‖q

≤ ‖f‖q + ‖(−∆)1/q+f‖q

≤ ‖(−∆)s0/2f‖2 + ‖(−∆)σ−1f‖q.

(1.29)

Since our assumptions imply that 1/q < σ − 1 we have the result. �

Lemma 1.3.6. If f, g ∈ S(R3) and 2 < s ≤ 5/2, let 1/(s− 2) < q <∞ and

σ = σ(s) =
s

2
+

1

q
then

‖g‖L∞(R3) ≤ C
(
‖g‖Hs−1(R3) + ‖g‖Ḣ2σ−2

q (R3)

)
,

‖∇f‖L∞(R3) ≤ C
(
‖f‖Hs(R3) + ‖f‖Ḣ2σ−1

q (R3)

)
.

(1.30)

Proof. The proof is essentially that given in Lemma 1.3.3, see [28, in-

equality (12)]. �

Lemma 1.3.7. If f, g ∈ S(R3) and 2 < s ≤ 5/2, let 1/(s− 2) < q <∞ and

σ = σ(s) =
s

2
+

1

q
, then

‖[∆, f ]g‖L2(R3) ≤ C{‖f‖Hs(R3) + ‖(−∆)σ−1/2f‖Lq(R3)}‖g‖Ḣ1(R3)

+C{‖g‖Hs−1(R3) + ‖(−∆)σ−1g‖Lq(R3)}‖f‖Ḣ2(R3).
(1.31)
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Proof. By Proposition 1.3.1 with s = 2, we have

‖[∆, f ]g‖2 ≤ C (‖∇f‖∞‖g‖Ḣ1 + ‖g‖∞‖f‖Ḣ2) . (1.32)

An application of Lemma 1.3.6 yields the result. �

Lemma 1.3.8. For 0 < s < 1 we have

‖w‖Ḣs+1 . ‖w‖1−s

Ḣ1 ‖w‖s
Ḣ2 . (1.33)

Proof. It follow by Hölder’s inequality with p =
1

s
and q =

1

1− s
, (see

[3]). �

Lemma 1.3.9. If w ∈ S(R2), 2 < q <∞, σ =
9

8
+

3

4q
and 0 < s0 = 1−2

q
< 1,

then

‖∇w‖L∞(R2) . ‖w‖1−s0

Ḣ1(R2)
‖w‖s0

Ḣ2(R2)
+ ‖w‖Ḣ2σ−1

q (R2). (1.34)

Proof. It follow by Lemma 1.3.3 and the interpolation result (1.33). �
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Chapter 2

Local and global well-posedness
of isotropic Benney-Luke
equation and local regularity of
solutions

In this chapter we will study the well-posedness of the IVP associated to

isotropic Benney-Luke equation in the following equivalent form{
(1− b∆)(utt − c2∆u) = (1− c2)∆u− F (ut,∇u,∇ut)

u(0,x) = u0(x) ut(0,x) = u1(x)
(2.1)

where

Φ(t,x) :=

√
µ

ε
u

(
t
√
µ
,

1
√
µ
x

)
,

F (ut,∇u,∇ut) = ut∆u + 2∇ut · ∇u, c2 =
a

b
, ui(x) =

ε
√
µ

Φi(
√
µx), i = 0, 1

and x ∈ R2.

2.1 Main results

We show that the local solution of the IVP (2.1) possesses certain local

regularity, like for example ∇Φ(t),Φt(t) ∈ L∞(R2) a.e. in t ∈ (0, T ).
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The next result recovers the one obtained by Paumond in [24], but by

using the Strichartz inequalities for the wave equation.

Theorem 2.1.1 (Local well-posedness and local regularity). Assume that

u0 ∈ H2(R2) and u1 ∈ H1(R2). Then there exists T = T (‖u0‖H2 , ‖u1‖H1) >

0 such that (2.1) has a unique solution u satisfying

u ∈ C(0, T ;H2(R2)), ut ∈ C(0, T ;H1(R2)).

And u has the following local regularity(∫ T

0

‖(−∆)σ−1/2u(t, ·)‖r
qdt

)1/r

<∞,

(∫ T

0

‖(−∆)σ−1ut(t, ·)‖r
qdt

)1/r

<∞,

∫ T

0

‖(∇u, ut)(t)‖4
∞dt <∞,

with r =
4q

q − 2
, σ =

9

8
+

3

4q
and 2 < q <∞.

Moreover, for all 0 < T ′ < T there exists a neighborhood V of (u0, u1) ∈

H2(R2)×H1(R2) such that the map data solution

V → C(0, T ′;H2(R2)) ∩ Lr(0, T ′; Ḣ2σ−1
q (R2))

(ũ0, ũ1) → ũ(t)

is Lipschitz.

The main result for the (BL) equation is in Ḣ1(R2) ∩ Ḣ2(R2)×H1(R2).

Theorem 2.1.2 (Local well-posedness in the energy space). Assume that

u0 ∈ Ḣ1(R2) ∩ Ḣ2(R2) and u1 ∈ H1(R2). Then there exists T > 0, T =

T (‖u0‖Ḣ1(R2), ‖u0‖Ḣ2(R2), ‖u1‖H1(R2)), such that (2.1) has a unique solution u

satisfying

u ∈ C(0, T ; Ḣ2(R2) ∩ Ḣ1(R2)) ∩ Lr(0, T ; Ḣ2σ−1
q (R2)),
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ut ∈ C(0, T ;H1(R2)) ∩ Lr(0, T ; Ḣ2σ−2
q (R2)),

∇u, ut ∈ C(0, T ;H1(R2)) ∩ L4(0, T ;L∞(R2)), (2.2)

with r =
4q

q − 2
, σ =

9

8
+

3

4q
and 2 < q <∞.

Moreover, for all 0 < T ′ < T there exists a neighborhood V of (u0, u1) ∈

Ḣ1(R2) ∩ Ḣ2(R2)×H1(R2) such that the map data solution

V → C(0, T ′; Ḣ2(R2) ∩ Ḣ1(R2)) ∩ Lr(0, T ′; Ḣ2σ−1
q (R2))

(ũ0, ũ1) → ũ(t)

is Lipschitz.

Remark 2.1.3. It is important to observe that the flow of (2.1) preserves

the Hamiltonian

H(u)(t) =‖∂tu(t)‖2
2 + µ b‖∂tu(t)‖2

Ḣ1

+ ‖u(t)‖2
Ḣ1 + µ a‖u(t)‖2

Ḣ2 = H(u)(0).
(2.3)

See [24] for the proof of (2.3).

Using the previous remark, it is possible to establish an a priori estimate

to prove the following global result for (BL) in the energy space.

Corollary 2.1.4 (Global well-posedness). For any T > 0, u0 ∈ Ḣ1(R2) ∩

Ḣ2(R2) and u1 ∈ H1(R2) there exists a unique solution u of (2.1) such that

∇u ∈ C(0, T ;H1(R2)), ∂tu ∈ C(0, T ;H1(R2)).

And the solution u has local regularity

u ∈ Lr(0, T ; Ḣ2σ−1
q (R2)),

ut ∈ Lr(0, T ; Ḣ2σ−2
q (R2)),

with r =
4q

q − 2
, σ =

9

8
+

3

4q
and 2 < q <∞.

26



We also consider the well-posedness for the Cauchy problem of the isotropic

Benney-Luke equation (2.1) in three spatial dimensions. In this case we have

the following.

Theorem 2.1.5 (Local well-posedness and local regularity). Assume that

(u0, u1) ∈ Hs(R3) × Hs−1(R3) and 2 < s 6 5/2. Then there exists T > 0

such that the Cauchy problem:{
(1− bc−2∆)(utt −∆u) = c−2(1− c2)∆u− c−2 (ut∆u+ 2∇u · ∇ut) ,

u(0,x) = u0(x), ut(0,x) = u1(x),
(2.4)

has a unique solution u satisfying

u ∈ C(0, T ;Hs(R3)), ∂tu ∈ C(0, T ;Hs−1(R3)),

(∫ T

0

‖(−∆)σ−1/2u(t, ·)‖r
qdt

)1/r

<∞,

(∫ T

0

‖(−∆)σ−1ut(t, ·)‖r
qdt

)1/r

<∞

(2.5)

and ∫ T

0

‖(∇u, ut)(t)‖2
∞dt <∞ (2.6)

with r =
2q

q − 2
, σ =

s

2
+

1

q
and (s− 2)−1 < q <∞.

Where u is such that

Φ(t,x) :=

√
µ

ε
u(

t
√
µ
,

1

c
√
µ

x),

with Φ satisfying the isotropic Benney-Luke equation (1), c2 = a/b, (t,x) ∈

R+ × R3, R+ = [0,∞), a and b are positive real constants and ∇ and ∆ are

the three-dimensional gradient and Laplacian, respectively.
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2.2 Proof of Theorem 2.1.1

We will use the fixed point theorem and the Strichartz estimates. We

begin by rewritten the equation of the IVP (2.1) in the equivalent form

(1− bc−2∆)(utt −∆u) = c−2(1− c2)∆u− c−2[∆, u]ut, (2.7)

where [∆, u]ut := ∆(uut)− u∆ut.

We will use the next notation G(u) = G1(u) +G2(u) where

G1(u) = c−2(1− c2)∆(1− bc−2∆)−1u (2.8)

and

G2(u) = −c−2(1− bc−2∆)−1[∆, u]ut. (2.9)

Then we can write the solution of the IVP associated to (2.7) as

u(t) = K̇(t)u0 +K(t)u1 +

∫ t

0

K(t− t′)G(u)(t′)dt′. (2.10)

We prove the local well-posedness for the IVP associated to (2.7) in

H2(R2) × H1(R2). To do so, we will use a fixed point argument as above

mentioned.

For M,T > 0 and 2 < q <∞, define the complete metric space

XM
T = {u ∈ C([0, T ];H2(R2)) : |||u||| ≤M}

where

|||u||| = ‖u‖L∞T H2 + ‖ut‖L∞T H1 + ‖u‖Lr
T H2σ−1

q
+ ‖ut‖Lr

T H2σ−2
q

, (2.11)

with r =
4q

q − 2
and σ =

9

8
+

3

4q
.

28



We shall prove that for an appropriate choice of T and M the operator

F(u)(t) = K̇(t)u0 +K(t)u1 +

∫ t

0

K(t− t′)G(u)(t′)dt′ (2.12)

is a contraction on XM
T .

We estimate ‖F(u)‖H2 and ‖∂tF(u)‖H1 using the linear estimate (1.6), as

follows,

‖F(u)(t)‖H2+‖∂tF(u)(t)‖H1 . ‖u0‖H2 + (1 + t)‖u1‖H1

+

∫ t

0

(t− t′)‖G(u)(t′)‖2dt
′ +

∫ t

0

‖(−∆)
1
2G(u)(t′)‖2dt

′.
(2.13)

Note that

‖(−∆)(s−1)/2G2(u)(t)‖2 . ‖[∆, u]ut(t)‖2 (2.14)

if 1 ≤ s ≤ 3, n ≥ 1.

Using (2.14), Lemma 1.3.4 and Hölder’s inequality we have

I1 :=

∫ t

0

(t− t′)‖G(u)(t′)‖2dt
′

≤C
∫ t

0

(t− t′)‖ut‖H1

(
‖u‖Ḣs0+1 + ‖(−∆)σ− 1

2u‖q

)
dt′

+ C

∫ t

0

(t− t′)‖u‖Ḣ2

(
|1− c2|+ ‖ut‖H1 + ‖(−∆)σ−1ut‖q

)
dt′

. 2T 2 ‖u‖L∞T H2‖ut‖L∞T H1 + |1− c2| T 2 ‖u‖L∞T H2

+ ‖ut‖L∞T H1(

∫ t

0

(t− t′)r′dt′)
1
r′ (

∫ t

0

‖(−∆)σ− 1
2u‖r

q dt
′)1/r

+ ‖u‖L∞T H2(

∫ t

0

(t− t′)r′dt′)
1
r′ (

∫ t

0

‖(−∆)σ−1ut‖r
q dt

′)1/r.

(2.15)

Then

I1 . |1− c2| T 2 ‖u‖L∞T H2 + T 2 ‖u‖L∞T H2‖ut‖L∞T H1+

T β{‖ut‖L∞T H1 ‖u‖Lr
T Ḣ2σ−1

q
+ ‖u‖L∞T H2 ‖ut‖Lr

T Ḣ2σ−2
q

},
(2.16)

29



where β = 1 +
1

r′
>

7

4
.

Again using (2.14), Lemma 1.3.4, (1.33) and Hölder’s inequality we have

I2 :=

∫ t

0

‖(−∆)
1
2G(u)(t′)‖2dt

′

.T ‖u‖L∞T Ḣ2‖ut‖L∞T H1 + T |1− c2| ‖u‖L∞T Ḣ1

+ T‖ut‖L∞T Ḣ1‖u‖1−s0

L∞T Ḣ1‖u‖s0

L∞T Ḣ2

+ T β−1{‖ut‖L∞T H1 ‖u‖Lr
T Ḣ2σ−1

q
+ ‖u‖L∞T Ḣ2 ‖ut‖Lr

T Ḣ2σ−2
q

}.

(2.17)

Then using (2.13), (2.16) and (2.17) it follows that

‖F(u)(t)‖L∞T H2 + ‖∂tF(u)‖L∞T H1 ≤C‖u0‖H2 + C(1 + T )‖u1‖H1

+ C
(
|1− c2|T 2 + P (T )|||u|||

)
|||u|||

(2.18)

where P (T ) = T β + T 2 + T β−1 + T.

Now we want to estimate the mixed norms. First, we recall that

σ − 1 =
3

4q
+

1

8
, r =

4q

q − 2
, 2 < q <∞

and n = 2. If r1 = r, q1 = q, r2 = ∞, q2 = 2, ρ1 = 2σ − 1, µ = 2 and

−ρ2 = 1 then ri, qi, ρi and µ, i = 1, 2, satisfy (1.17), (1.18), (1.19) and

(1.20) and using the Strichartz estimates (1.21) and (1.22) we have

I3 =‖F(u)‖Lr
T Ḣ2σ−1

q
+ ‖∂tF(u)‖Lr

T Ḣ2σ−2
q

≤ C

(
‖u0‖Ḣ2 + ‖u1‖Ḣ1 +

∫ T

0

‖(−∆)
1
2G(u)(t′)‖2dt

′
)
.

(2.19)

Using the same estimates obtained for I2 we have

I3 . ‖u0‖H2 + (1 + T )‖u1‖H1 (2.20)

+T |1− c2|‖u‖L∞T Ḣ1 + P (T )|||u|||2. (2.21)

Putting together the estimates (2.18) and (2.20) it follows that

|||F(u)||| ≤ C ( ‖u0‖H2 + (1 + T )‖u1‖H1)

+ C
(
|1− c2|(T + T 2) + P (T )|||u|||

)
|||u|||.

(2.22)
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Let δ = ‖u0‖H2 + ‖u1‖H1 , M = 2C(1 + T )δ and T such that

C|1− c2|(T + T 2) + C(T 2 + T β + T + T β−1)M ≤ 1/2 (2.23)

then we have that F(XM
T ) ⊂ XM

T .

Noticing that

|||F(u)− F(ũ)||| .
∫ T

0

(T − t′)‖G(u)(t′)−G(ũ)(t′)‖2dt
′

+

∫ T

0

‖(−∆)1/2 (G(u)(t′)−G(ũ)(t′)) ‖2dt
′,

(2.24)

and using the fact that

G2(u)−G2(ũ) = −c−2(1− bc−2∆)−1([∆, (u− ũ)]∂tu+[∆, ũ](u− ũ)t) (2.25)

it follows from Lemma 1.3.4 that if u, ũ ∈ XT
M then

|||F(u)− F(ũ)||| . ((T + T 2)|1− c2|+ (T + T 1/r′)M) |||u− ũ|||. (2.26)

Thus, there exists a unique fixed point of F which is a solution of the integral

equation (2.12) if (T + T 2)|1− c2|+ (T + T 1/r′)M < 1. �

2.3 Proof of Theorem 2.1.2

Fix q, 2 < q <∞. Let u0 ∈ Ḣ1(R2) ∩ Ḣ2(R2), u1 ∈ H1(R2) and

F(u0,u1)(u)(t) = F(u)(t) = K̇(t)u0 +K(t)u1 +

∫ t

0

K(t− t′)G(u)(t′)dt′. (2.27)

We define the complete metric space

Y M
T = {u ∈ C([0, T ]; Ḣ2(R2) ∩ Ḣ1(R2)) : |||u|||Y ≤M}

with

|||u|||Y = ‖u‖L∞T Ḣ2 + ‖u‖L∞T Ḣ1 + ‖ut‖L∞T H1

+

(∫ T

0

‖(−∆)σ−1/2u(t)‖r
qdt

)1/r

+

(∫ T

0

‖(−∆)σ−1ut(t)‖r
qdt

)1/r

,
(2.28)
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r =
4q

q − 2
, σ =

9

8
+

3

4q
.

We shall prove that for an appropriate choice of T and M the operator

given by (2.27) is a contraction on Y M
T .

Let r1 = r, q1 = q, r2 = ∞, q2 = 2, ρ1 = 2σ − 1, µ = 2 and −ρ2 = 1,

then ri, qi, ρi and µ, i = 1, 2, satisfy (1.17), (1.18), (1.19), (1.20). Now,

using the linear estimate (1.6), the Strichartz estimates (1.21) and (1.22)

with ri, qi, ρi and µ, i = 1, 2 we get

|||F(u)|||Y .‖u0‖Ḣ2 + ‖u0‖Ḣ1

+ (1 + T )‖u1‖H1 +

∫ T

0

‖(−∆)
1
2G(u)(t′)‖L2dt′.

(2.29)

From (2.17) we have

|||F(u)|||Y ≤C (‖u0‖Ḣ2 + ‖u0‖Ḣ1 + (1 + T )‖u1‖H1)

+ C
(
|1− c2|T + (T β−1 + T )|||u|||Y

)
|||u|||Y ,

(2.30)

where β = 1 +
1

r′
>

7

4
.

Let δ = ‖u0‖Ḣ2 + ‖u0‖Ḣ1 + ‖u1‖H1 , M = 2C(1 + T )δ and T such that

C|1− c2|T + C(T + T β−1)M ≤ 1/2 (2.31)

then we have that F(Y M
T ) ⊂ Y M

T .

Since

|||F(u)− F(ũ)|||Y .
∫ T

0

‖(−∆)1/2 (G(u)(t′)−G(ũ)(t′)) ‖2dt
′. (2.32)

Using (2.25) and Lemma 1.3.4 we get

|||F(u)− F(ũ)|||Y ≤ C
(
|1− c2|T + (T β−1 + T )M

)
|||u− ũ|||Y (2.33)
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whenever u, ũ ∈ Y M
T .

Then, there exists a unique fixed point of F if

C(|1− c2|T + (T β−1 + T )M) < 1.

Therefore, the existence and uniqueness of the solution of the problem (2.1)

have been proved in the metric space Y M
T . The uniqueness of the solution in

the space Ḣ1(R2) ∩ Ḣ2(R2)×H1(R2) is obtained by standard arguments.

Using similar arguments to the those applied in the continuous depen-

dence proof in Theorem 2.1.1 one can show that the map data solution is

locally Lipschitz. �

2.4 Proof of Corollary 2.1.4

Now we will show that the local solution obtained in Theorem 2.1.2 can

be extended to [0, T ], for any T > 0, time interval. It suffices to prove the ex-

istence of a uniform bound for ‖u(t)‖2
Ḣ1 , ‖u(t)‖2

Ḣ2 , ‖∂tu(t)‖2
2 and ‖∂tu(t)‖2

Ḣ1 .

This allows us to establish an a priori estimate and then make use of the

local theory to extend the solution. To do so we use the following conserved

quantity

H(u)(t) = ‖∂tu(t)‖2
2 + µ b‖∂tu(t)‖2

Ḣ1 + ‖u(t)‖2
Ḣ1 + µ a‖u(t)‖2

Ḣ2

= H(u)(0),
(2.34)

satisfied by the flow of (11) for p ≥ 1 integer (see [29]).
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2.5 Proof of Theorem 2.1.5

(3-dimensional case)

Fix s, 2 < s ≤ 5/2 and take q ∈ (1/(s− 2),∞). For T,M > 0 define the

complete metric space

XM
T = {u ∈ C(0, T ;Hs(R3)) : |||u||| ≤M}

where

|||u||| =‖u‖L∞T Hs(R3) + ‖ut‖L∞T Hs−1(R3)

+ ‖u‖Lr
T Ḣ2σ−1

q (R3) + ‖ut‖Lr
T Ḣ2σ−2

q (R3),
(2.35)

with r =
2q

q − 2
, σ =

s

2
+

1

q
.

Let the operator

F(u)(t) = K̇(t)u0 +K(t)u1 +

∫ t

0

K(t− t′)G(u)(t′)dt′. (2.36)

It is possible to prove that F is a contraction in XM
T using the similar

arguments as in the proof Theorem 2.1.1.

Using the Strichartz estimates (1.21) and (1.22) with r1 = r, q1 = q, r2 =

∞, q2 = 2, ρ1 = 2σ − 1, µ = s and −ρ2 = s− 1 and the linear estimate we

get

|||F(u)||| . ‖u0‖Hs(R3) + (1 + T )‖u0‖Hs−1(R3)

+

∫ T

0

(T − t′)‖G(u)(t′)‖L2(R3)dt
′

+

∫ T

0

‖(−∆)
s−1
2 G(u)(t′)‖L2(R3)dt

′.

(2.37)

For (2.14), Lemma 1.3.7 and Hölder’s inequality we have
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∫ T

0

(T − t′)‖G(u)(t′)‖L2(R3)dt
′ . |1− c2| T 2 ‖u‖L∞T Hs(R3)

+ T 2 ‖u‖L∞T Hs(R3)‖ut‖L∞T Hs−1(R3)

+ T β‖ut‖L∞T Hs−1(R3) ‖u‖Lr
T Ḣ2σ−1

q (R3)

+ T β‖u‖L∞T Hs(R3) ‖ut‖Lr
T Ḣ2σ−2

q (R3),

(2.38)

and ∫ t

0

‖(−∆)
s−1
2 G(u)(t′)‖2dt

′ .T ‖u‖L∞T Hs(R3)‖ut‖L∞T Hs−1

+ T |1− c2| ‖u‖L∞T Hs−1

+ T‖ut‖L∞T Hs−1‖u‖L∞T Hs

+ T β−1‖ut‖L∞T Hs−1 ‖u‖Lr
T Ḣ2σ−1

q

+ T β−1‖u‖L∞T Ḣ2 ‖ut‖Lr
T Ḣ2σ−2

q
.

(2.39)

with β = 1 +
1

r′
> 1.

Putting together the estimates (2.38) and (2.39) it follows that

|||F(u)||| ≤ C ( ‖u0‖Hs + (1 + T )‖u1‖Hs−1)

+ C|1− c2|(T + T 2)|||u|||

+ C(T β + T 2 + T β−1 + T )|||u|||2.

(2.40)

Let δ = ‖u0‖Hs + ‖u1‖Hs−1 , M = 2C(1 + T )δ and T such that

C|1− c2|(T + T 2) + C(T 2 + T β + T + T β−1)M ≤ 1/2. (2.41)

Then we have that F(XM
T ) ⊂ XM

T .

Using that

|||F(u)− F(ũ)||| .
∫ T

0

(T − t′)‖G(u)(t′)−G(ũ)(t′)‖L2(R3)dt
′

+

∫ T

0

‖(−∆)(s−1)/2 (G(u)(t′)−G(ũ)(t′)) ‖L2(R3)dt
′.

(2.42)
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It follows from (2.25), Lemma 1.3.7 that if u, ũ ∈ XM
T then

|||F(u)− F(ũ)||| . ((T + T 2)|1− c2|+ (T + T 1/r′)M) |||u− ũ|||. (2.43)

Thus, F is a contraction in XM
T under the restriction in (2.41) for M

and T . Therefore, exists a unique solution of (2.4) in XM
T , but for standards

arguments we have the uniqueness of solution in the spaceHs(R3)×Hs−1(R3).

�
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Chapter 3

Isotropic p-generalized
Benney-Luke equation:
well-posedness results and local
regularity

3.1 Introduction and statements of the re-

sults

The isotropic p-generalized Benney-Luke equations is giving by

Φtt −∆Φ + µ(a∆2Φ− b∆Φtt) + ε(Φt∆pΦ + 2∇pΦ · ∇Φt) = 0, (3.1)

where ∇p and ∆p are

∇pΦ = ((∂xΦ)p, (∂yΦ)p) (3.2)

∆pΦ = ∇ · (∇pΦ) = ∂x(∂xΦ)p + ∂y(∂yΦ)p. (3.3)

In this chapter we study the local regularity of the isotropic p-generalized

Benney-Luke and the local well-posedness in the energy space, Ḣ2(R2) ∩

Ḣ1(R2)×H1(R2). The main result is the global well-posedness in this space.

We remind that, the natural space for the solitary wave of IVP associated to

(p-gBL) equations is the energy space.
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We prove the local well-posedness for isotropic p-generalized Benney-Luke

equations using a fixed point argument and the generalized Strichartz in-

equalities for the wave equation.

We define u such that

Φ(t,x) :=

√
µ

p
√
ε
u

(
t
√
µ
,

1
√
µ
x

)
, (3.4)

with Φ satisfying the isotropic p-generalized Benney-Luke equation, p ∈ Z+

and p > 1, then the associated initial value problem (3.1) is equivalent to{
(1− b∆)(utt − c2∆u) = (1− c2)∆u− Fp(ut,∇pu,∇ut)

u(0,x) = u0(x) ut(0,x) = u1(x),
(3.5)

where c2 =
a

b
, ui(x) =

p
√
ε

√
µ

Φi(
√
µx), i = 0, 1, x ∈ R2 and

Fp(ut,∇pu,∇ut) = p ut(ux)
p−1uxx + p utu(uy)

p−1uyy

+ 2∂tux(ux)
p + 2∂tuy(uy)

p,
(3.6)

(notice that Fp is the nonlinear term of isotropic Benney-Luke equation when

p = 1). The nonlinear term

(1− b∆)−1Fp(ut,∇pu,∇ut)

does not satisfy a “null condition” but it is possible to prove that the Sobolev

exponent s = 2 can be achieved in two dimensions.

Using the Strichartz estimates we prove that the (p-gBL) equation is

locally and globally well-posed in the energy space and we establish local

regularity results.

Theorem 3.1.1. Assume that p ≥ 2 integer and u0 ∈ Ḣ1(R2) ∩ Ḣ2(R2),

u1 ∈ H1(R2). Then there exist T = T (‖u0‖Ḣ1(R2), ‖u0‖Ḣ2(R2), ‖u1‖H1(R2)) > 0
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and a unique solution u of (3.5) such that

u ∈ C(0, T ; Ḣ2(R2) ∩ Ḣ1(R2)) ∩ Lr(0, T ; Ḣ2σ−1
q (R2)),

ut ∈ C(0, T ;H1(R2)) ∩ Lr(0, T ; Ḣ2σ−2
q (R2)).

In addition u has the following local regularity(∫ T

0

‖(−∆)σ−1/2u(t, ·)‖r
Lq dt

)1/r

<∞,

(∫ T

0

‖(−∆)σ−1ut(t, ·)‖r
Lq dt

)1/r

<∞,

with r =
4q

q − 2
, σ =

9

8
+

3

4q
and 2 < q < q(p), where

q(p) =

∞, p = 2, 3, 4,
2p

p− 4
, p > 4.

(3.7)

Moreover, for all 0 < T ′ < T there exists a neighborhood V of (u0, u1) ∈

Ḣ1(R2) ∩ Ḣ2(R2)×H1(R2) such that the map data solution

V → C(0, T ′; Ḣ2(R2) ∩ Ḣ1(R2)) ∩ Lr(0, T ′; Ḣ2σ−1
q (R2))

(ũ0, ũ1) → ũ(t)

is Lipschitz.

Remark 3.1.2. The p-generalized Benney-Luke equations (3.1) have a con-

served quantity as the Benney-Luke equation, i.e.,

H(Φ)(t) = ‖Φt(t)‖2
2 + µ b‖Φt(t)‖2

Ḣ1 + ‖Φ(t)‖2
Ḣ1 + µ a‖Φ(t)‖2

Ḣ2

= H(Φ)(0).
(3.8)

Proof. See [29].
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Corollary 3.1.3. Let p ≥ 2 integer and T > 0. Then for all the functions

u0, u1 such that u0 ∈ Ḣ1(R2) ∩ Ḣ2(R2), u1 ∈ H1(R2), there exists a unique

solution u of (3.5) such that

∇u ∈ C(0, T ;H1(R2)), ut ∈ C(0, T,H1(R2)),

and ∫ T

0

‖(∇u, ut)(·, t)‖4
L∞ dt <∞.

3.2 Proof of Theorem 3.1.1

The tools we will use to show this are: Fixed point theorem, generalized

Stricharzt estimates for the wave equation and Lemma 1.3.3.

Using the scale change x̃ = cx and denoting the new function with the

same variable we have the following equivalent equation for (p-gBL)

utt −∆u = B−1G(u) (3.9)

with

G(u) = G0(u) +Gp(u)

G0(u) = (1− c2)c−2∆u = m2∆u

Gp(u) = −c−(p+1)Fp(ut,∇pu,∇ut) = kpFp(ut,∇pu,∇ut)

Bφ = (1−m2
1∆)φ, m2

1 =
b2

a
.

(3.10)

Fix p ≥ 2 integer, 2 < q < q(p), where q(p) is giving by (3.7) and let

r =
4q

q − 2
, σ =

9

8
+

3

4q
and for T,M > 0 define the complete metric space

XM
T = {u ∈ C([0, T ]; Ḣ1(R2) ∩ Ḣ2(R2)) : |||u|||X ≤M},
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where

|||u|||X =‖u‖L∞T Ḣ1 + ‖u‖L∞T Ḣ2 + ‖ut‖L∞T H1

+ ‖u‖Lr
T Ḣ2σ−1

q
+ ‖ut‖Lr

T Ḣ2σ−2
q

,
(3.11)

and let

F(u) = K̇(t)u0 +K(t)u1 +

∫ t

0

K(t− t′)B−1G(u)(t′) dt′, (3.12)

where G and B are giving by (3.10).

Using the linear estimates for K(t) and K̇(t) we have

‖F(u)(t)‖Ḣ1 + ‖F(u)(t)‖Ḣ2 + ‖∂tF(u)(t)‖H1

. ‖u0‖Ḣ1 + ‖u0‖Ḣ2 + (1 + t)‖u1‖H1 +

∫ t

0

‖(−∆)
1
2B−1G(u)(t′)‖2 dt

′

(3.13)

and the Strichartz estimates imply

‖F(u)‖Lr
T Ḣ2σ−1

q
+ ‖∂tF(u)‖Lr

T Ḣ2σ−2
q

. ‖u0‖Ḣ2 + ‖u1‖H1

+

∫ T

0

‖(−∆)
1
2B−1G(u)(t′)‖2 dt

′
(3.14)

then

|||F(u)|||X . (1 + T )(‖u0‖Ḣ1 + ‖u0‖Ḣ2 + ‖u1‖H1)

+

∫ T

0

‖(−∆)
1
2B−1G(u)(t′)‖2 dt

′.
(3.15)

Remark 3.2.1.

‖(−∆)
1
2B−1G(u)(t′)‖2 = ‖(−∆)

1
2B−1(m2∆u+ kpFp(ut,∇pu,∇ut)(t

′))‖2

. |m2|‖u(t′)‖Ḣ1 + |kp|‖Fp(ut,∇pu,∇ut)(t
′))‖2.

This remark and (3.15) imply that

|||F(u)|||X . (1 + T )(‖u0‖Ḣ1 + ‖u0‖Ḣ2 + ‖u1‖H1)

+ T |m2|‖u‖L∞T Ḣ1 + |kp|
∫ T

0

‖Fp(u)‖2 dt
′.

(3.16)
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We have from (3.6)

I4 :=

∫ T

0

‖Fp(u)‖2 dt
′ . p

∫ T

0

‖ut(t
′)‖∞‖∇u(t′)‖p−1

∞ ‖u(t′)‖Ḣ2 dt′

+ 2

∫ T

0

‖∇u(t′)‖p
∞‖ut(t

′)‖Ḣ1 dt′,

from Lemma 1.3.3

I4 . p

∫ T

0

{
‖ut(t

′)‖Ḣs0 + ‖ut(t
′)‖Ḣ2σ−2

q

}
×{

‖u(t′)‖Ḣs0+1 + ‖u(t′)‖Ḣ2σ−1
q

}p−1

‖u(t′)‖Ḣ2 dt′

+ 2‖ut‖L∞T Ḣ1

∫ T

0

(
‖u(t′)‖Ḣs0+1 + ‖u(t′)‖Ḣ2σ−1

q

)p

dt′.

Therefore

I4 . p ‖ut‖L∞T Ḣs0‖u‖L∞T Ḣ2

∫ T

0

(
‖u(t′)‖Ḣs0+1 + ‖u(t′)‖Ḣ2σ−1

q

)p−1

dt′

+ 2‖ut‖L∞T Ḣ1

∫ T

0

(
‖u(t′)‖Ḣs0+1 + ‖u(t′)‖Ḣ2σ−1

q

)p

dt′

+ p ‖u‖L∞T Ḣ2

∫ T

0

‖ut(t
′)‖Ḣ2σ−2

q

(
‖u(t′)‖Ḣs0+1 + ‖u(t′)‖Ḣ2σ−1

q

)p−1

dt′.

(3.17)

Hence

I4 . p T‖ut‖L∞T Ḣs0‖u‖L∞T Ḣ2‖u‖p−1

L∞T Ḣs0+1

+ p‖ut‖L∞T Ḣs0‖u‖L∞T Ḣ2

∫ T

0

‖u(t′)‖p−1

Ḣ2σ−1
q

dt′

+ p‖u‖L∞T Ḣ2‖u‖p−1

L∞T Ḣs0+1

∫ T

0

‖ut(t
′)‖Ḣ2σ−2

q
dt′

+ p‖u‖L∞T Ḣ2

∫ T

0

‖ut(t
′)‖Ḣ2σ−2

q
‖u(t′)‖p−1

Ḣ2σ−1
q

dt′

+ 2T‖ut‖L∞T Ḣ1‖u‖p

L∞T Ḣs0+1 + 2‖ut‖L∞T Ḣ1

∫ T

0

‖u(t′)‖p

Ḣ2σ−1
q

dt′.

(3.18)
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Using the Hölder inequality we have∫ T

0

‖u(t′)‖p−1

Ḣ2σ−1
q

dt′ ≤ T 1+(1−p)/r‖u‖p−1

Lr
T Ḣ2σ−1

q
,∫ T

0

‖ut(t
′)‖Ḣ2σ−2

q
dt′ ≤ T 1−1/r‖ut‖Lr

T Ḣ2σ−2
q

,∫ T

0

‖ut(t
′)‖Ḣ2σ−2

q
‖u(t′)‖p−1

Ḣ2σ−1
q

dt′ ≤ T 1−p/r‖ut‖Lr
T Ḣ2σ−2

q
‖u‖p−1

Lr
T Ḣ2σ−1

q
,∫ T

0

‖u(t′)‖p

Ḣ2σ−1
q

dt′ ≤ T 1−p/r‖u‖p

Lr
T Ḣ2σ−1

q
.

(3.19)

From (3.16), (3.18) and (3.19) we have

|||F(u)|||X ≤C(1 + T )(‖u0‖Ḣ1 + ‖u0‖Ḣ2 + ‖u1‖H1)

+ CT |m2|M + C|kp|P (T )Mp+1
(3.20)

with P (T ) = T + T 1−p/r + T 1+(1−p)/r + T 1−1/r.

Let δ = ‖u0‖Ḣ1 + ‖u0‖Ḣ2 + ‖u1‖H1 , M = 2C(1 + T )δ and T such that

C|m2|T + C|kp|P (T )Mp ≤ 1/2 (3.21)

then we have that F(XM
T ) ⊂ XM

T .

We can choose T and M such that F will be a contraction because

F(u)(t)− F(ũ)(t) =

∫ t

0

K(t− t′)B−1(G(u)−G(ũ))(t′) dt′,

from (3.13) and (3.14)

|||F(u)− F(ũ)|||X ≤ C

∫ T

0

‖(−∆)
1
2B−1(G(u)−G(ũ))(t′)‖2 dt

′.

By the inequality in the Remark 3.2.1

|||F(u)− F(ũ)|||X ≤C T |m2|‖u− ũ‖L∞T Ḣ1

+ C|kp|
∫ T

0

‖(Fp(u)− Fp(ũ))(t
′)‖2 dt

′.
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To estimate the last term we notice that

‖∇pu−∇pũ‖∞ . ‖∇(u− ũ)‖∞×

{‖
p−1∑
k=0

(∂xu)
p−1−k(∂xũ)

k‖∞ + ‖
p−1∑
k=0

(∂yu)
p−1−k(∂yũ)

k‖∞}
(3.22)

and

‖∆pu−∆pũ‖2

. p‖(∂xu)
p−1 − (∂xũ)

p−1‖∞‖∂2
xu‖2 + p‖∂xũ‖p−1

∞ ‖∂2
x(u− ũ)‖2

+ p‖(∂yu)
p−1 − (∂yũ)

p−1‖∞‖∂2
yu‖2 + p‖∂yũ‖p−1

∞ ‖∂2
y(u− ũ)‖2

. p‖∇(u− ũ)‖∞‖
p−2∑
k=0

(∂xu)
p−2−k(∂xũ)

k‖∞‖u‖Ḣ2

+ p‖∇(u− ũ)‖∞‖
p−2∑
k=0

(∂yu)
p−2−k(∂yũ)

k‖∞‖u‖Ḣ2

+ p‖∇ũ‖p−1
∞ ‖u− ũ‖Ḣ2 .

(3.23)

Since

Fp(u)− Fp(ũ) = 2∇(u− ũ)t · ∇pu+ (u− ũ)t∆pu

+ 2∇ũt · (∇pu−∇pũ) + ũt(∆pu−∆pũ)

and using the definitions of ∇pu and ∆pu (see (5) and (6)) we have∫ T

0

‖(Fp(u)− Fp(ũ))(t
′)‖2 dt

′ .
∫ T

0

‖∇pu‖∞‖(u− ũ)t‖Ḣ1 dt′

+ p

∫ T

0

‖(u− ũ)t‖∞‖∇u‖p−1
∞ ‖u‖Ḣ2 dt′

+

∫ T

0

‖∇pu−∇pũ‖∞‖ũt‖Ḣ1 dt′

+

∫ T

0

‖ũt‖∞‖∆pu−∆pũ‖2 dt
′.

(3.24)

Remark 3.2.2. We recall that, by Lemma 1.3.3 and the interpolation result

(1.33) we have

‖∇w‖∞ . ‖w‖Ḣs0+1 + ‖w‖Ḣ2σ−1
q

. ‖w‖1−s0

Ḣ1 ‖w‖s0

Ḣ2 + ‖w‖Ḣ2σ−1
q
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and that∫ T

0

‖∇w(t′, ·)‖∞ dt′ . T‖w‖L∞T Ḣs0+1+T 1/r′‖w‖Lr
T Ḣ2σ−1 . (T+T 1/r′)|||w|||X .

To simplify the proof we only consider in the last terms right hand side

in (3.24) the most difficult ones. Using the Remark 3.2.2, (3.22) and (3.23)

we just need to estimate the following two expressions:∫ T

0

‖ũt‖Ḣ1‖u− ũ‖Ḣ2σ−1
q

‖u‖p−1−k

Ḣ2σ−1
q

‖ũ‖k
Ḣ2σ−1

q
dt′ (3.25)

and ∫ T

0

‖ũt‖Ḣ1‖u− ũ‖Ḣs0+1‖u‖p−1−k

Ḣ2σ−1
q

‖ũ‖k
Ḣ2σ−1

q
dt′. (3.26)

Using Hölder’s inequality we have∫ T

0

‖ũt‖Ḣ1‖u− ũ‖Ḣ2σ−1
q

‖u‖p−1−k

Ḣ2σ−1
q

‖ũ‖k
Ḣ2σ−1

q
dt′

. T 1−p/r|||u|||p−1−k
X |||ũ|||k+1

X |||u− ũ|||X
(3.27)

and ∫ T

0

‖ũt‖Ḣ1‖u− ũ‖Ḣs0+1‖u‖p−1−k

Ḣ2σ−1
q

‖ũ‖k
Ḣ2σ−1

q
dt′

. ‖ũt‖L∞T H1‖u− ũ‖1−s0

L∞T Ḣ1‖u− ũ‖s0

L∞T Ḣ2

∫ T

0

‖u‖p−1−k

Ḣ2σ−1
q

‖ũ‖k
Ḣ2σ−1

q
dt′

. T 1+(1−p)/r|||u|||p−1−k
X |||ũ|||k+1

X |||u− ũ|||X .

(3.28)

A similar argument applied to the remainder terms on the right hand side

of (3.24) implies

|||F(u)− F(ũ)|||X

. (T |m2|+ |kp|(T + T 1−p/r + T 1+(1−p)/r + T 1−1/r)Mp)|||u− ũ|||X .
(3.29)

Hence by standard arguments we can guarantee the existence and unique-

ness of a solution of the Cauchy problem (3.5). �
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Proof of the Corollary 3.1.3

The result follows from the local theory (Theorem 3.1.1) and a priori

estimate of ‖u(t)‖Ḣ1(R2), ‖u(t)‖Ḣ2(R2) and ‖ut(t)‖H1(R2) (the Remark 3.1.2).

�
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Chapter 4

Local well-posedness of the
generalized Benney-Luke
equations

4.1 Introduction and notations

In this chapter we will study the IVP associated to an equivalent version

of generalized Benney-Luke equation (9)

Φtt −∆Φ + µ(a∆2Φ− b∆Φtt) + ε(Φt∆Φ + 2∇Φ · ∇Φt) + f(∇Φ) = 0 (4.1)

where f(∇Φ) = β∇ · (|∇Φ|m∇Φ), Φ(t,x) is a real valued function, (t,x) ∈

R+×R2, R+ = [0,∞), a, b, µ,m, and ε are positive real constants, β constant.

The equation (4.1) with m = 2 is a model to describe dispersive and weakly

nonlinear long water waves with small amplitude. If we omit the last term

on the left hand side of equation (4.1), it becomes the isotropic Benney-Luke

equation (1).

Wang, Xu and Chen in [5] studied the Cauchy problem associated to an

n-dimensional generalized Benney-Luke equation (4.1 ) where n = 1, 2, 3, 4.
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They proved the existence and the uniqueness of the global solution in

H2(Rn) × H1(Rn) for the β ≤ 0 case using energy conservation law and

the nonexistence of the global solutions of the Cauchy problem for the β > 0

case.

4.2 Statements of the results

The first result provides local well-possedness of the IVP associated to the

equation (4.1) in Hs(R2)×Hs−1(R2) for 9
5
< s ≤ 2 and the local regularity

results.

Theorem 4.2.1. Let 9
5
< s ≤ 2 and m = {1, 2, 3, 4}, ε = 0. Assume that

Φ0 ∈ Hs(R2), Φ1 ∈ Hs−1(R2). Then there exist T > 0 depending on s and

‖Φ0‖Hs(R2) + ‖Φ1‖Hs−1(R2) such that (4.1) has a unique solution Φ satisfying

Φ(0,x) = Φ0(x), Φt(0,x) = Φ1(x),

Φ ∈
1⋂

j=0

Cj([0, T );Hs−j(R2))

and (∫ T

0

‖(−∆)σ−1/2Φ(t, ·)‖r
Lq dt

)1/r

<∞,

(∫ T

0

‖(−∆)σ−1Φt(t, ·)‖r
Lq dt

)1/r

<∞,

for any q ∈ ( 2
4s−7

, 2
2−s

), σ = s
2

+ 1
8

+ 3
4q

, and r = 4q
q−2

.

In addition, the solution map from the initial data to the solution space

is locally Lipschitz.

The main result of local well-posedness for the generalized Benney-Luke

equation is in the energy space, Ḣ1(R2) ∩ Ḣ2(R2)×H1(R2) is as follows:
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Theorem 4.2.2. Let m be a positive integer and assume that Φ0 ∈ Ḣ1(R2)∩

Ḣ2(R2) and Φ1 ∈ H1(R2). Then there exists T = T (‖Φ0‖Ḣ1 , ‖Φ0‖Ḣ2 , ‖Φ1‖H1),

T > 0, such that (4.1) has a unique solution Φ satisfying Φ(0,x) = Φ0(x),

Φt(0,x) = Φ1(x),

Φ ∈ C(0, T ; Ḣ2(R2) ∩ Ḣ1(R2)) ∩ Lr(0, T ; Ḣ2σ−1
q (R2)),

Φt ∈ C(0, T ;H1(R2)) ∩ Lr(0, T ; Ḣ2σ−2
q (R2)),

with r =
4q

q − 2
, σ =

9

8
+

3

4q
and 2 < q < q(m),

q(m) =

∞, m = 1, 2, 3, 4,
2m

m− 4
, m > 4.

(4.2)

We also have

∇Φ,Φt ∈ C(0, T ;H1(R2)) ∩ L4(0, T ;L∞(R2)). (4.3)

Moreover, for all 0 < T ′ < T there exists a neighborhood V of (Φ0,Φ1) ∈

Ḣ1(R2) ∩ Ḣ2(R2)×H1(R2) such that the map data solution

V → C(0, T ′; Ḣ2(R2) ∩ Ḣ1(R2)) ∩ Lr(0, T ′; Ḣ2σ−1
q (R2))

(Φ̃0, Φ̃1) → Φ̃(t)

is Lipschitz.

Proposition 4.2.3. Suposse that Φ0 ∈ Ḣ1(R2) ∩ Ḣ2(R2), Φ1 ∈ H1(R2),

Φ(t,x) ∈ C(0, T ; Ḣ2(R2) ∩ Ḣ1(R2)) ∩ C1(0, T ;H1(R2)) ∩ C2(0, T ;L2(R2))

is the solution for the Cauchy problem associated to (4.1). Then for all

t ∈ (0, T )

E(t) = ‖∂tΦ(t)‖2
2 + µb‖∂tΦ(t)‖2

Ḣ1

+ ‖Φ(t)‖2
Ḣ1 + µa‖Φ(t)‖2

Ḣ2 −
2β

m+ 2
‖∇Φ(t)‖m+2

Lm+2 = E(0)
(4.4)
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Proof. See ([5]).

Using the previous proposition, it is possible to establish an a priori

estimate to prove the following global result for the generalized Benney-Luke

equation (4.1) in the energy space.

Theorem 4.2.4. Let m ≥ 1 integer and β < 0. For any T > 0, Φ0 ∈

Ḣ1(R2)∩ Ḣ2(R2) and Φ1 ∈ H1(R2) there exists a unique solution Φ of (4.1)

such that Φ(0,x) = Φ0(x), Φt(0,x) = Φ1(x) and

∇Φ ∈ C(0, T ;H1(R2)), ∂tΦ ∈ C(0, T ;H1(R2)).

In following result we establish that the local solution of the Cauchy

problem associated to the generalized Benney-Luke equation (4.1) possesses

more local regularity than the initial data, for instance ∇Φ(t, ·),Φt(t, ·) ∈

L∞(R2) a.e. t ∈ (0, T ] when the initial data Φ0 ∈ H2(R2) and Φ1 ∈ H1(R2).

Theorem 4.2.5 (Local well-posedness and local regularity). Let m ≥ 1 and

assume that Φ0 ∈ H2(R2) and Φ1 ∈ H1(R2). Then there exists T > 0, T =

T (‖Φ0‖H2(R2), ‖Φ1‖H1(R2)) such that (4.1) has a unique solution Φ satisfying

Φ(0,x) = Φ0(x), Φt(0,x) = Φ1(x)

Φ ∈ C(0, T ;H2(R2)),Φt ∈ C(0, T ;H1(R2)).

In addition, (∫ T

0

‖(−∆)σ−1/2Φ(t, ·)‖r
Lq dt

)1/r

<∞,

(∫ T

0

‖(−∆)σ−1Φt(t, ·)‖r
Lq dt

)1/r

<∞,

with r =
4q

q − 2
, σ =

9

8
+

3

4q
and 2 < q <∞.
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In particular, ∫ T

0

‖(∇Φ,Φt)(t)‖4
∞ dt <∞.

Moreover, for all 0 < T ′ < T there exists a neighborhood V of (Φ0,Φ1) ∈

H2(R2)×H1(R2) such that the map data solution

V → C(0, T ′;H2(R2)) ∩ Lr(0, T ′; Ḣ2σ−1
q (R2))

(Φ̃0, Φ̃1) → Φ̃(t)

is Lipschitz.

It is also possible to establish local regularity results for solutions of the

generalized Benney-Luke equation in the 3-dimensional case. For all Φ0 ∈

Hs(R3) and Φ1 ∈ Hs−1(R3) with 2 < s 6 5/2 exist a unique solution Φ(t, ·)

such that ∇Φ(t),Φt(t) ∈ L∞(R3) a.e. t ∈ (0, T ).

Theorem 4.2.6 (Local well-posedness and local regularity). Assume that

(u0, u1) ∈ Hs(R3) × Hs−1(R3) and 2 < s 6 5/2. Then there exists T > 0

such that the Cauchy problem:{
(1− bc−2∆)(utt −∆u) = c−2 ((1− c2)∆u− ut∆u− 2∇u · ∇ut)− αf(∇u),
u(0,x) = u0(x), ut(0,x) = u1(x),

(4.5)

has a unique solution u satisfying

u ∈ C(0, T ;Hs(R3)), ∂tu ∈ C(0, T ;Hs−1(R3)),

in addition (∫ T

0

‖(−∆)σ−1/2u(t, ·)‖r
Lq dt

)1/r

<∞,

(∫ T

0

‖(−∆)σ−1ut(t, ·)‖r
Lq dt

)1/r

<∞,

where r =
2q

q − 2
, σ =

s

2
+

1

q
and (s− 2)−1 < q <∞.
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And ∫ T

0

‖(∇u, ut)(t)‖2
∞ dt <∞. (4.6)

With f(∇u) = ∇ · (|∇u|m∇u) and u is such that

Φ(t,x) :=

√
µ

ε
u(

t
√
µ
,
c
√
µ

x), (4.7)

Φ satisfying the generalized Benney-Luke equation (4.1), c2 = a/b, (t,x) ∈

R+ × R3, R+ = [0,∞), a and b are positive real constants.

Using (4.7) with Φ satisfying (4.1) in R2, we have that the initial value

problem associated to the generalized Benney-Luke equation (4.1) in R2, is

equivalent to{
(1− b∆)(utt − c2∆u) = (1− c2)∆u−H(u)

u(0,x) = u0(x) ut(0,x) = u1(x)
(4.8)

where

H(u) = ut∆u+ 2∇u · ∇ut + βm∇ · (|∇u|m∇u),

c2 =
a

b
, ui(x) =

ε
√
µ

Φi(
√
µx), i = 0, 1, x ∈ R2 and βm = β

εm .

Considering that the IVP of the generalized Benney-Luke equations (4.1)

and the Cauchy problem associated (4.8) are equivalent, we use the Strichartz

estimates of the wave equations to prove our results of local well-posedness

and local regularity.

4.3 Proof of Theorem 4.2.1

We begin by rewriting our initial value problem (4.8) in the equivalent

form

(1− bc−2∆)(utt −∆u) = c−2(1− c2)∆u− c2βmFm(u,∇u), (4.9)
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u(0) = u0, ut(0) = u1, (4.10)

where

Fm(u,∇u) = ∇ · (|∇u|m∇u). (4.11)

Fix 9/5 < s ≤ 2 and take q ∈ ( 2
4s−7

, 2
2−s

) and for T,M > 0, we define the

complete metric space

XM
T = {u ∈ ([0, T );Hs(R2) : |||u||| ≤M},

where

|||u||| = ‖u‖L∞T Hs(R2) + (

∫ T

0

‖(−∆)σ−1/2u(t, ·)‖r
Lq dt)1/r,

with r = 4q
q−2

and σ = s
2

+ 1
8

+ 3
4q

.

We will show that for an appropriate choice of T and M the operator

F(u)(t) = K̇(t)u0 + K(t)u1 +

∫ t

0

K(t− t′)G(u)(t′) dt′, (4.12)

is a contraction of XM
T into itself.

We will use the notation G(u) = G1(u) +G3(u) where

G1 = c−2(1− c2)∆(1− bc−2∆)−1u (4.13)

and

G3 = −c−2βm(1− bc−2∆)−1Fm(u,∇u). (4.14)

We estimate ‖F(u)‖L∞T Hs using the linear estimate (1.6) and ‖F(u)‖Lr
T Ḣ2σ−1

using the Strichartz estimates, Proposition 1.2.1, as follows,

‖F(u)‖L∞T Hs + ‖F(u)‖Lr
T Ḣ2σ−1

q
. ‖u0‖Hs + (1 + T )‖u1‖Hs−1

+

∫ T

0

(T − t′)‖G(u)(t′)‖2 dt
′ +

∫ T

0

‖(−∆)(s−1)/2G(u)(t′)‖2 dt
′.

(4.15)
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To estimate the fractional derivative of the non-linear term, we use that

for 1 ≤ s ≤ 2

‖(−∆)(s−1)/2G3(u)(t
′)‖2

2 . ‖|∇u|mux‖2 + ‖|∇u|muy‖2
2

. ‖∇u‖2m
∞ {‖ux‖2

2 + ‖uy‖2
2}

. ‖∇u‖2m
∞ ‖∇u‖2

2

(4.16)

and

‖(−∆)(s−1)/2G1(u)(t
′)‖2 . ‖(−∆)(s−1)/2u(t′)‖2 . ‖u(t′)‖Hs , (4.17)

for all s.

Using Lemma 1.3.5 we have

‖∇u‖m
∞ . (‖∇u‖Ḣs0 + ‖∇u‖Ḣ2σ−2

q
)m . ‖u‖m

Ḣs0+1 + ‖u‖m
Ḣ2σ−1

q
. (4.18)

Therefore, if s0 + 1 < s, we have

‖∇u‖m
∞ . ‖u‖m

Hs + ‖u‖m
Ḣ2σ−1

q
.

Since

‖(−∆)(s−1)/2G3(u)‖2 . ‖u‖Hs(‖u‖m
Hs + ‖u‖m

Ḣ2σ−1
q

)

. ‖u‖m+1
Hs + ‖u‖Hs‖u‖m

Ḣ2σ−1
q

,
(4.19)

then∫ T

0

‖(−∆)(s−1)/2G3(u(t
′))‖2 dt

′ .
∫ T

0

‖u(t′)‖m+1
Hs dt′

+

∫ T

0

‖u(t′)‖Hs‖u(t′)‖m
Ḣ2σ−1

q
dt′.

(4.20)

Therefore∫ T

0

‖(−∆)(s−1)/2G3(u(t
′))‖2 dt

′ . T (‖u‖L∞T Hs)m+1

+ ‖u‖L∞T Hs

∫ T

0

‖u(t′)‖m
Ḣ2σ−1

q
dt′.

(4.21)
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Using the Hölder’s inequality we get∫ T

0

‖u(t′)‖m
Ḣ2σ−1

q
dt′ . T 1−m/r‖u‖m

Lr
T Ḣ2σ−1

q
. (4.22)

Combining (4.16), (4.18) and the Hölder’s inequality we conclude∫ T

0

(T − t′)‖G3(u)(t
′)‖2 dt

′ . T 2(‖u‖L∞T Hs)m+1

+ T 2−m/r‖u‖L∞T Hs‖u‖m
Lr

T Ḣ2σ−1
q

.

(4.23)

�

4.4 Proof of Theorem 4.2.2

First, rewriting the IVP associated to equation (4.1) in the equivalent

form (4.8), we will use the Strichartz estimates for the wave equation, Lemma

1.3.9 and the fixed point theorem.

Fix q, 2 < q < q(m). Let u0 ∈ Ḣ1(R2) ∩ Ḣ2(R2), u1 ∈ H1(R2) and

F(u0,u1)(u)(t) = F(u)(t) = K̇(t)u0 +K(t)u1 +

∫ t

0

K(t− t′)G(u)(t′) dt′, (4.24)

with G(u) = G1(u) +G2(u) +G3(u) where

G1 = c−2(1− c2)∆(1− bc−2∆)−1u, (4.25)

G2(u) = −c−2(1− bc−2∆)−1[∆, u]ut. (4.26)

and

G3 = −c−2βm(1− bc−2∆)−1Fm(u,∇u). (4.27)

We define the complete metric space

Y M
T = {u ∈ C([0, T ]; Ḣ2(R2) ∩ Ḣ1(R2)) : |||u|||Y ≤M}
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with

|||u|||Y = ‖u‖L∞T Ḣ2 + ‖u‖L∞T Ḣ1 + ‖ut‖L∞T H1

+

(∫ T

0

‖(−∆)σ−1/2u(t)‖r
q dt

)1/r

+

(∫ T

0

‖(−∆)σ−1ut(t)‖r
q dt

)1/r

,
(4.28)

r =
4q

q − 2
, σ =

9

8
+

3

4q
.

We shall prove that for an appropriate choice of T and M the operator

given by (4.24) is a contraction on Y M
T .

Let r1 = r, q1 = q, r2 = ∞, q2 = 2, ρ1 = 2σ − 1, µ = 2 and −ρ2 = 1,

then ri, qi, ρi and µ, i = 1, 2, satisfy (1.17), (1.18), (1.19), (1.20). Now,

using the linear estimate (1.6), the Strichartz estimates (1.21) and (1.22)

with ri, qi, ρi and µ, i = 1, 2 we get

|||F(u)|||Y .‖u0‖Ḣ2 + ‖u0‖Ḣ1

+ (1 + T )‖u1‖H1 +

∫ T

0

‖(−∆)
1
2G(u)(t′)‖L2 dt′.

(4.29)

Using the inequalities (2.17) and Lemma 1.3.9 we get

|||F(u)|||Y ≤C (‖u0‖Ḣ2 + ‖u0‖Ḣ1 + (1 + T )‖u1‖H1)

+ C
(
|1− c2|T + (T β−1 + T )|||u|||Y

)
|||u|||Y

+ C(T + T 1−m/r)|||u|||m+1
Y ,

(4.30)

where β = 1 +
1

r′
.

Let δ = ‖u0‖Ḣ2 + ‖u0‖Ḣ1 + ‖u1‖H1 , M = 2C(1 + T )δ and T such that

C|1− c2|T + C(T + T β−1)M + C(T + T 1−m/r)Mm ≤ 1/2 (4.31)

then we have that F(Y M
T ) ⊂ Y M

T .

In a similar form, it possible to prove that under the same restrictions on

M and T , the operator F is a contraction on Y M
T . Thus there exists a unique

fixed point of F which is a solution the IVP (4.8). �
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4.5 Proof of Theorem 4.2.5

We can write the solution of the IVP associated to (4.1) as

u(t) = K̇(t)u0 +K(t)u1 +

∫ t

0

K(t− t′)G(u)(t′) dt′. (4.32)

with G(u) = G1(u) +G2(u) +G3(u) where

G1 = c−2(1− c2)∆(1− bc−2∆)−1u, (4.33)

G2(u) = −c−2(1− bc−2∆)−1[∆, u]ut. (4.34)

and

G3 = −c−2βm(1− bc−2∆)−1Fm(u,∇u). (4.35)

For M,T > 0 and 2 < q < q(m), define the complete metric space

XM
T = {u ∈ C([0, T ];H2(R2)) : |||u||| ≤M}

where

|||u||| = ‖u‖L∞T H2 + ‖ut‖L∞T H1 + ‖u‖Lr
T H2σ−1

q
+ ‖ut‖Lr

T H2σ−2
q

, (4.36)

with r =
4q

q − 2
and σ =

9

8
+

3

4q
.

We shall prove that for an appropriate choice of T and M the operator

F(u)(t) = K̇(t)u0 +K(t)u1 +

∫ t

0

K(t− t′)G(u)(t′) dt′ (4.37)

is a contraction on XM
T .

We estimate |||F(u)||| using the linear estimate (1.6) and Stricharzt esti-

mates, as follows,

|||F(u)(t)||| . ‖u0‖H2 + (1 + T )‖u1‖H1

+

∫ T

0

(T − t′)‖G(u)(t′)‖2 dt
′ +

∫ T

0

‖(−∆)
1
2G(u)(t′)‖2 dt

′.
(4.38)
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Using the inequalities (2.16), (2.17) and Lemma 1.3.9 we get

|||F(u)||| ≤C‖u0‖H2 + C(1 + T )‖u1‖H1

+ C
(
|1− c2|T 2 + P (T )|||u|||

)
|||u|||

+ C
(
T 2 + T + T 1−m/r

)
|||u|||m+1

(4.39)

where P (T ) = T β + T 2 + T β−1 + T and β = 1 +
1

r′
.

Let δ = ‖u0‖H2 + ‖u1‖H1 , M = 2C(1 + T )δ and T such that

C |1− c2| (T + T 2) + C P (T )M + C
(
T 2 + T + T 1−m/r

)
Mm ≤ 1/2 (4.40)

then we have that F(XM
T ) ⊂ XM

T .

In a similar form, it possible to prove that under the same restrictions on

M and T , the operator F is a contraction on XM
T . Thus there exists a unique

fixed point of F which is a solution the IVP (4.8). �
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Chapter 5

Local well-posedness of the
generalized Benney-Luke
equations in a periodic setting

5.1 Statement and the proof of the result

We are interested in the Cauchy problem for a rescaled version of gener-

alized Benney-Luke equation (gBL)

utt −∆u+ a∆2u− b∆utt + 2∇u · ∇ut + ut∆u+ β∇ · (|∇u|m∇u) = 0 (5.1)

u(0,x) = u0(x), ut(0,x) = u1(x). (5.2)

where x = (x, y) ∈ T× R (or T× T), and t ∈ R+, a, b > 0, β constant, and

m > 0 integer.

The equation (5.1) with m = 2 and a 6= b is a model to describe dispersive

and weakly non linear long water waves with small amplitude. If we omit the

last term of equation (5.1), it becomes a version of the isotropic Benney-Luke

equation (1) above mentioned in the periodic setting.

In Theorem 5.1.1 we establish result of local well-posedness in Hs(T ×

R) × Hs−1(T × R) for 2 < s ≤ 3 and β = 0. It is possible to prove that
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the associated Cauchy problem to (5.1) is locally well-posed in Hs(T×T)×

Hs−1(T × T) for 2 < s ≤ 3 and β ∈ R, in this case it is necessary to take

the Kato-Ponce commutator estimate for functions in T×T (see [12, Lemma

A.2 in the Appendix]).

Theorem 5.1.1. Let 2 < s ≤ 3 and β = 0. Assume that u0 ∈ Hs(T × R),

u1 ∈ Hs−1(T × R). Then there exist T > 0 depending on s and (‖u0‖Hs +

‖u1‖Hs−1) such that (5.1) and (5.2) has a unique solution u satisfying

u ∈
1⋂

j=0

Cj([0, T );Hs−j(T× R)).

In addition, the solution map from the initial data to the solution space

is locally Lipschitz.

Proof.

We begin by rewritting the associated Cauchy problem equation (5.1) in the

equivalent form{
utt −∆u = G(u) on R× T× R
u(0, .) = u0(.) ut(0, .) = u1(.) on T× R

(5.3)

where

G(u)(τ) := G1(u)(τ) +G2(u)(τ)

and

G1(u)(τ) := c−2(1− c2)∆(1− bc−2∆)−1u,

G2(u)(τ) := −c−2(1− bc−2∆)−1[∆, u]ut,

with c2 = a/b.
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We will use the fixed point theorem, thus we show first that the following

operator

F(u)(t) = K̇(t)u0 + K(t)u1 +

∫ t

0

K(t− t′)G(u)(t′) dt′, (5.4)

is a contraction on the complete metric space

XM
T = {u ∈ C([0, T ];Hs(T× R)) : |||u||| ≤M},

where

|||u||| := sup
[0,T ]

{‖u(t, ·)‖Hs(T×R) + ‖ut(t, ·)‖Hs−1(T×R)}

for an appropriate choice of T and M .

From now on, we will denote ‖ · ‖L2(T×R) and ‖ · ‖L∞(T×R) for ‖.‖2 and

‖.‖∞, respectively.

We estimate ‖F(u)(t)‖Hs and ‖∂tF(u)(t)‖Hs using the linear estimates of

wave operator, as follows,

‖F(u)(t)‖Hs . ‖u0‖Hs + (1 + t)‖u1‖Hs−1 +

∫ t

0

(t− t′)‖G(u)(t′)‖2 dt
′

+

∫ t

0

‖(−∆)(s−1)/2G(u)(t′)‖2 dt
′,

(5.5)

and

‖∂tF(u)(t)‖Hs−1 . ‖u0‖Hs + (1 + t)‖u1‖Hs−1 +

∫ t

0

(t− t′)‖G(u)(t′)‖2 dt
′

+

∫ t

0

‖(−∆)(s−1)/2G(u)(t′)‖2 dt
′.

(5.6)

Now we have the following

‖|F(u)‖| . ‖u0‖Hs + (1 + T )‖u1‖Hs−1 +

∫ T

0

(T − t′)‖G(u)(t′)‖2 dt
′

+

∫ T

0

‖(−∆)(s−1)/2G(u)(t′)‖2 dt
′.

(5.7)
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It is important to recall that

G(u)(τ) := G1(u)(τ) +G2(u)(τ)

where

G1(u)(τ) := c−2(1− c2)∆(1− bc−2∆)−1u

G2(u)(τ) := −c−2(1− bc−2∆)−1[∆, u]ut

and note that if 1 ≤ s ≤ 3 then

‖(−∆)(s−1)/2G1(u)(τ)‖2 . ‖(−∆)(s−1)/2u(τ)‖2 (5.8)

and

‖(−∆)(s−1)/2G2(u)(τ)‖2 . ‖[∆, u]ut(τ)‖2. (5.9)

Then

Ĩ1 :=

∫ T

0

(T − t′)‖G(u)(t′)‖2 dt
′

.
∫ T

0

(T − t′){‖u(t′)‖2 + ‖[∆, u]ut(t
′)‖2} dt′

. T 2 sup
[0,T ]

‖u(t)‖2 +

∫ T

0

(T − t′)‖[∆, u]ut(t
′)‖2 dt

′.

(5.10)

Using once again that

[∆, u]ut(τ) = ut∆u(τ) + 2(∇ut.∇u)(τ) = ∆(uut)− u∆ut

it follows that

I1 :=

∫ T

0

(T − t′)‖[∆, u]ut(t
′)‖2 dt

′

.
∫ T

0

(T − t′){‖ut(t
′)‖∞‖u(t′)‖Hs + 2‖∇ut(t

′)‖2‖∇u(t′)‖∞} dt′
(5.11)

with s ≥ 2.
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For the Sobolev embedding theorem (see [1], [6], [34]) with s0 > 1, we

have the following:

I1 .
∫ T

0

(T − t′){‖ut(t
′)‖Hs0‖u(t′)‖Hs + 2‖ut(t

′)‖Ḣ1‖u(t′)‖Hs0+1} dt′

. T 2{‖ut‖L∞T Hs0‖u‖L∞T Hs + 2‖ut‖L∞T Ḣ1‖u‖L∞T Hs0+1 .

(5.12)

Moreover, denoting by

Ĩ2 :=

∫ T

0

‖(−∆)(s−1)/2G(u)(t′)‖2 dt
′ (5.13)

and using (5.8) and (5.9) we have that

Ĩ2 .
∫ T

0

‖(−∆)(s−1)/2u(t′)‖2 dt
′ +

∫ T

0

‖[∆, u]ut(t
′)‖2 dt

′

.T‖u‖L∞T Ḣs−1 +

∫ T

0

‖ut‖∞‖u(t′)‖Hs dt′

+ 2

∫ T

0

‖∇ut(t
′)‖2‖∇u(t′)‖∞ dt′

(5.14)

Ĩ2 .T ‖u‖L∞T Ḣs−1 + ‖u‖L∞T Ḣs

∫ T

0

‖ut(t
′)‖Hs0 dt′

+ 2 ‖ut‖L∞T Ḣ1

∫ T

0

‖u(t′)‖Hs0+1 dt′.

(5.15)

Thus

Ĩ2 . T ‖u‖L∞T Ḣs−1 + T‖u‖L∞T Ḣs‖ut‖L∞T Hs0 + 2T‖ut‖L∞T Ḣ1‖u‖L∞T Hs0+1 , (5.16)

where s = s0 + 1 > 2.

Using all the above estimates we have for 2 < s ≤ 3 that

‖|F(u)(t)‖| . (1 + T ){‖u0‖Hs + ‖u1‖Hs−1}

+ T 2‖u‖L∞T L2|1− c2|+ T 2‖ut‖L∞T Hs−1‖u‖L∞T Hs

+ T 2‖ut‖L∞T Ḣ1‖u‖L∞T Hs

+ T‖u‖L∞T Ḣs−1|1− c2|+ T‖u‖L∞T Hs‖ut‖L∞T Hs−1

+ T‖ut‖L∞T Ḣ1‖u‖L∞T Hs .

(5.17)
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Let δ = ‖u0‖Hs + ‖u1‖Hs−1 , M = 2C̃(1 + T )δ and T such that

C̃|1− c2|(T + T 2) + C̃(T + T 2)M ≤ 1/2 (5.18)

then from (5.17) we deduce that

F(XM
T ) ⊂ XM

T .

To prove that F : XM
T → XM

T is a contraction we will use that

G2(u)−G2(ũ) = −c−2(1− bc−2∆)−1{[∆, (u− ũ)]ut + [∆, ũ](u− ũ)t}

First we observe that

F(u)(t)− F(ũ)(t) =

∫ t

0

K(t− t′)(G(u)−G(ũ)) dt′

then

|‖F(u)− F(ũ)|‖ .
∫ T

0

(T − t′)‖(G(u)−G(ũ))(t′)‖2 dt
′

+

∫ T

0

‖(−∆)(s−1)/2(G(u)−G(ũ))(t′)‖2 dt
′

(5.19)

and using

G(u)(τ) := G1(u)(τ) +G2(u)(τ),

where

G1(u)(τ) := c−2(1− c2)∆(1− bc−2∆)−1u

we see that

|‖F(u)− F(ũ)|‖ .
∫ T

0

(T − t′)‖(G1(u)−G1(ũ))(t
′)‖2 dt

′

+

∫ T

0

‖(−∆)(s−1)/2(G1(u)−G1(ũ))(t
′)‖2 dt

′

+

∫ T

0

(T − t′)‖(G2(u)−G2(ũ))(t
′)‖2 dt

′

+

∫ T

0

‖(−∆)(s−1)/2(G2(u)−G2(ũ))(t
′)‖2 dt

′.

(5.20)
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Applying (5.9) it follows that

|‖F(u)− F(ũ)|‖ .
∫ T

0

(1 + T − t′)‖[∆, (u− ũ)]ut + [∆, ũ](u− ũ)t‖2 dt
′

+

∫ T

0

(T − t′)‖(G1(u− ũ))(t′)‖2 dt
′

+

∫ T

0

‖(−∆)(s−1)/2(G1(u− ũ))(t′)‖2 dt
′..

(5.21)

Using Proposition 1.3.1 and Sobolev embedding theorem we have that for

s > 2

|‖F(u)− F(ũ)|‖ . |1− c2|
∫ T

0

(T − t′)‖(u− ũ)(t′)‖2 dt
′

+ |1− c2|
∫ T

0

‖(−∆)(s−1)/2(u− ũ)(t′)‖2 dt
′

+

∫ T

0

(1 + T − t′)‖∇(u− ũ)(t′)‖∞ ‖ut(t
′)‖Ḣ1 dt′

+

∫ T

0

(1 + T − t′)‖ut(t
′)‖∞‖(u− ũ)(t′)‖Ḣ2 dt′

+

∫ T

0

(1 + T − t′)‖∇ũ(t′)‖∞‖(u− ũ)t(t
′)‖Ḣ1 dt′

+

∫ T

0

(1 + T − t′)‖(u− ũ)t(t
′)‖∞‖ũ(t′)‖Ḣ2 dt′,

(5.22)

then

|‖F(u)− F(ũ)|‖ . |1− c2|
∫ T

0

(T − t′)‖(u− ũ)(t′)‖2 dt
′

+ |1− c2|
∫ T

0

‖(−∆)(s−1)/2(u− ũ)(t′)‖2 dt
′

+

∫ T

0

(1 + T − t′)‖(u− ũ)(t′)‖Hs ‖ut(t
′)‖Ḣ1 dt′

+

∫ T

0

(1 + T − t′)‖ut(t
′)‖Hs−1‖(u− ũ)(t′)‖Ḣ2 dt′

+

∫ T

0

(1 + T − t′)‖ũ(t′)‖Hs‖(u− ũ)t(t
′)‖Ḣ1 dt′

+

∫ T

0

(1 + T − t′)‖(u− ũ)t(t
′)‖Hs−1‖ũ(t′)‖Ḣ2 dt′,

(5.23)
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therefore

|‖F(u)− F(ũ)|‖ .T (1 + T )|1− c2|‖u− ũ‖L∞T Hs

+ T (1 + T ){‖u− ũ‖L∞T Hs‖ut‖L∞T Hs−1

+ ‖ũ‖L∞T Hs‖(u− ũ)t‖L∞T Hs−1}.

(5.24)

For all u, ũ ∈ XM
T

|‖F(u)− F(ũ)|‖ . T (1 + T )(|1− c2|+M)|‖u− ũ|‖. (5.25)

For the choice of T and M in (5.18) we have that

CT (1 + T )(|1− c2|+M) < 1

therefore F is a contraction en XM
T .

According to Banach fixed point theorem, there exist a unique solution

in XM
T of the initial value problem (5.3). By standard arguments, we can

guarantee there exists a unique solution in

C([0, T );Hs(T× R)×Hs−1(T× R)). �
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Concluding Remarks

Here we point out some open problems connected with this work.

1. In Chapters 2 and 3, we proved that the IVP associated to the isotropic

Benney-Luke (BL) and the p-generalized Benney-Luke (p-gBL) equa-

tions are globally well-posed for initial data in Ḣ2(R2) ∩ Ḣ1(R2) ×

H1(R2). But it is not clear whether or not one can have local well-

posedness results in the space Hs(R2)×Hs−1(R2), for s < 2.

2. In Chapter 2, we also proved that IVP associated to the (BL) is lo-

cally well-posed in Hs(R3) × Hs−1(R3) for 2 < s ≤ 5/2. It would be

interesting to determine whether or not this result could be improved

to obtain the global solutions in Ḣ2(R3) ∩ Ḣ1(R3)×H1(R3).

3. It is possible to prove global well-posedness for the IVP associated to

the generalized Benney-Luke equation (gBL) for initial data in Ḣ2(T×

R)∩Ḣ1(T×R)×H1(T×R) using the same techniques utilized to prove

Theorem 2.1.2. This will be done somewhere else.

4. Another interesting problem regards the nonlinear scattering for the

p-generalized Benney-Luke (p-gBL) equations. It seems reasonable to

obtain some results in this direction since we already have global solu-
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tions in the energy space and the solutions have good local regularity

properties.

5. Using the theory developed here seems possible to establish local well-

posedness for IVP associated to following modified Benney-Luke equa-

tion

Φtt −∆Φ + µ(a∆2Φ− b∆Φtt) + ε(B∆2Φtt − A∆3Φ)

+ ε(Φt∆Φ + 2∇Φ · ∇Φt) = 0,
(5.26)

where ε = µ2 and the parameters A, B are linked. The equation (5.26)

was proposed by Paumond in [25], which is still valid when we suppose

that a−b+1/3 = α is equal or close to 1/3. We remind that the model

given by isotropic Benney-Luke equation (1) does not hold for a = b

(α = 1/3).
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Appendix

Generalized Strichartz Inequalities for the Wave

Equation

Notation and Preliminaries

The purpose of the present appendix is to give a self-contained form to

this work and follows the ideas of an article of J.Ginibre and G.Velo, [10].

To keep the previous notation we express the standards norms in the

following form:

‖u‖Lq
t X = ‖u;Lq(R;X)‖ :=

(∫
R
‖u(t)‖q

Xdt

)1/q

,

where X is a normed linear space.

We take the space dimension n ≥ 2. Exponents in the spaces Lq are best

characterized by positive multiples of the basic function α(q) = 1/2 − 1/q

which have the following properties:

i) they are linear in 1/q and therefore behave linearly under interpolation;

ii) they vanish at q = 2;

iii) they are increasing in q.

Of special interest are the combinations

β(q) =
n+ 1

2
α(q), γ(q) = (n− 1)α(q), δ(q) = nα(q).
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The exponent β(q) is the loss of derivatives in an estimate used later, the

exponent γ(q) is the optimal time decay exponent of Lq solutions of the wave

equations, and δ(q) appears naturally in the Hölder and Sobolev inequalities

because n/q is the degree of x of the Lq norm.

We denote convolution in x or in t by ∗x or ∗t and we define the Paley-

Littlewood dyadic decomposition in the following standard form. Let ψ̂ ∈

C∞
0 (Rn) with values betwen 0 and 1, ψ̂(ξ) = 1 for |ξ| ≤ 1 and ψ̂(ξ) = 0 for

|ξ| ≥ 2.

We define ϕ̂0(ξ) = ψ̂(ξ) − ψ̂(2ξ) and for any j ∈ Z, ϕ̂j(ξ) = ϕ̂0(2
−jξ) so

that

Supp ϕ̂j ⊂ {ξ : 2j−1 ≤ |ξ| ≤ 2j+1}

and for any ξ ∈ Rn \ {0} we have

∑
j∈Z

ϕ̂j(ξ) = 1

with at most two nonvanishing terms in the sum. We also define ϕ̃j =

ϕj−1 + ϕj + ϕj+1 for all j ∈ Z. Then ϕ̂j = ˆ̃ϕjϕ̂j thereby allowing for the use

of the standard trick

ϕj ∗ u = ϕ̃j ∗ ϕj ∗ u (5.27)

for any tempered distribution u.

The proofs of the inequalities naturally yield then in terms of Besov

spaces.The Sobolev or Lq version of the inequalities follows from the Besov

version by the known embeddings between those spaces. With each tem-

pered distribution u we associate the sequence of C∞ functions ϕj ∗ u, to be

considered as a function of two variables j and x. The homogeneous Besov
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spaces Ḃρ
q,s is then defined for any ρ ∈ R and 1 ≤ q, s ≤ ∞ by

Ḃρ
q,s = {u : ‖u; ‖ = ‖2ρjϕj ∗ u; lsjLq

x‖ <∞} (5.28)

where one takes first the Lq norm in the variable x and then the ls norm in

the variable j; i.e.

‖u‖Ḃρ
q,s
≡ ‖2ρjϕj ∗ u‖lsjLq(Rn) = {

∑
j∈Z

2ρjs‖ϕj ∗ u‖s
Lq(Rn)}1/s

Similarly the homogeneous Triebel-Lizorkin space Ḟ ρ
q,s is defined, for q <

∞, by

Ḟ ρ
q,s = {u : ‖u; Ḟ ρ

q,s‖ = ‖2ρjϕj ∗ u;Lq
xl

s
j‖ <∞}

where the norms are taken in the opposite order. By the Minkowsky inequal-

ity

lsLq ⊂ Lqls ⇒ Ḃρ
q,s ⊂ Ḟ ρ

q,s for q ≥ s

lsLq ⊃ Lqls ⇒ Ḃρ
q,s ⊃ Ḟ ρ

q,s for q ≤ s.

Comparison with the homogeneous Sobolev spaces Ḣρ
q follows from the

Paley-Littlewood theory. More precisely, from the Hilbert space valued ver-

sion of the Mikhlin-Hörmander theorem which implies that

Ḣρ
q = Ḟ ρ

q,2

for all ρ ∈ R and 1 < q <∞, thereby yielding the inclusions

Ḃρ
q,2 ⊂ Ḣρ

q for 2 < q <∞ Ḃρ
q,2 ⊃ Ḣρ

q for 1 < q ≤ 2. (5.29)

Lemma 5.1.2. Let 1 ≤ q2 ≤ q1 ≤ ∞, ρ1, ρ2 ∈ R with ρ1 +δ(q1) = ρ2 +δ(q2).

Then Ḃρ2
q2,s ⊂ Ḃρ1

q1,s and

‖u; Ḃρ1
q1,s‖ ≤ C‖u; Ḃρ2

q2,s‖.
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Proof. See [10], page 54. �

We shall state the Strichartz inequalities in the Besov spaces version,

which is both the stronger one and the easier one to prove. We will need

only the Besov spaces with s = 2 and we will write Ḃρ
q = Ḃρ

q,2. The Sobolev

version of the inequalities follows from the Besov version by the embedding

(5.29) and is obtained by replacing everywhere Ḃρ
q by Ḣρ

q and excluding the

cases q = 1 and q = ∞.

We are interested in the Cauchy problem for the wave equation{
utt −∆u = f

u(0,x) = u0(x), ut(0,x) = u1(x).
(5.30)

We define the operators U(t) = exp(iωt), K(t) = ω−1 sinωt, and K̇(t) =

cosωt, with ω = (−∆)1/2. The Cauchy problem (5.30) is solved by u = v+w,

where v is the solution of the homogeneous equation with the same data{
vtt −∆v = 0

v(0,x) = u0(x), vt(0,x) = u1(x),
(5.31)

namely

v(t) = K̇(t)u0 +K(t)u1 vt(t) = K(t)∆u0 + K̇(t)u1,

and w is the solution of the inhomogeneous equation with zero data,{
wtt −∆w = f

w(0,x) = 0, wt(0,x) = 0.
(5.32)

Let L(t) be any of the operators ωλU(t), ωλK(t), or ωλK̇(t), with λ ∈ R

and let χ+ and χ− be the characteristic function of R+ and R− in time. We

define LR(t) = χ+(t)L(t) and LA(t) = χ−(t)L(t) where R and A stand for
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retarded and advanced. Then the Cauchy problem is solved for positive time

by {
w(t) =

∫ t

0
K(t− t′)f(t′)dt′ = (KR ∗t χ+f)(t),

wt(t) =
∫ t

0
K̇(t− t′)f(t′)dt′ = (K̇R ∗t χ+f)(t).

(5.33)

Similar formulas with advanced operators solve the Cauchy Problem 5.32

for negatives times. We restrict our attention from now on to positive times.

The initial data (u0, u1) for the problem will be taken from the space

Y µ ≡ Ḣµ(Rn) + Ḣµ−1(Rn) (5.34)

for µ ∈ R arbitrary. The most studied case so far is the case µ = 1 of finite

energy solutions.

Statement and sketch of the proof.

We go now to state the generalized Strichartz inequalities .

Theorem 5.1.3. Let ρ1, ρ2, µ ∈ R and 2 ≤ q1, q2, r1, r2 ≤ ∞ and let the

following conditions be satisfied

0 ≤ 2/ri ≤Min(γ(qi), 1) for i = 1, 2 (5.35)

(2/ri, γ(qi)) 6= (1, 1) for i = 1, 2 (5.36)

ρ1 + δ(q1)− 1/r1 = µ (5.37)

ρ1 + δ(q1)− 1/r1 = 1− (ρ2 + δ(q2)− 1/r2). (5.38)

1.- Let (u0, u1) ∈ Y µ(see 5.34). Then v satisfies the estimates

‖v;Lr1(R, Ḃρ1
q1

)‖+ ‖vt;L
r1(R, Ḃρ1−1

q1
)‖ ≤ C‖(u0, u1);Y

µ‖. (5.39)

2.- For any interval I ⊂ R, possibly unbounded, the following estimates hold
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‖K ∗ f ;Lr1(I, Ḃρ1
q1

)‖ ≤ C‖f ;Lr′2(I, Ḃ−ρ2

q′2
)‖. (5.40)

3.-For any interval I = [0, T ), 0 < T < ∞, the function w = KR ∗ χ+f

defined by (5.33) satisfies the estimates

‖w;Lr1(I, Ḃρ1
q1

)‖+ ‖wt;L
r1(I, Ḃρ1−1

q1
)‖ ≤ C‖f ;Lr′2(I, Ḃ−ρ2

q′2
)‖. (5.41)

The constants C are independent of I.

The same results hold with Ḃρ
q replaced by Ḣρ

q , everywhere under the ad-

ditional assumption that qi <∞ (i = 1, 2) whenever qi occurs.

Sketch of the Proof. Recalling the definitions of v, w, K and K̇, the in-

equalities (5.39), (5.40) and (5.41) follow from the corresponding inequalities

involving only U . In addition, since the operator ωλ is an isomorphism from

Ḃρ
q to Ḃρ−λ

q for all λ ∈ R, we can fix arbitrarily µ = 0 without restricting the

generality. It will be therefore sufficient to prove the inequalities

‖U(·)u;Lr1(R, Ḃρ1
q1

)‖ ≤ C‖u‖2, (5.42)

‖U ∗ f ;Lr1(I, Ḃρ1
q1

)‖ ≤ C‖f ;Lr′2(I, Ḃ−ρ2

q′2
)‖, (5.43)

for I ⊂ R and

‖UR ∗ f ;Lr1(I, Ḃρ1
q1

)‖ ≤ C‖f ;Lr′2(I, Ḃ−ρ2

q′2
)‖. (5.44)

for I = [0, T ) ⊂ R+, under the conditions (5.35) and (5.36) and

ρi + δ(ri)− 1/qi = 0 for i = 1, 2. (5.45)

The shift by one from (5.38) to (5.45) is due to the change from K to U .
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We start from the estimate

sup
x
|
∫
exp(it|ξ|+ ixξ)ϕ̂0(ξ)dξ| ≤ min{‖ϕ̂0‖1, C0|t|−(n−1)/2} (5.46)

the non-trivial part of which is a stationary phase estimate (see [11]). Scaling

ξ by 2−j and x, t by 2j, we obtain

sup
x
|
∫
exp(it|ξ|+ ixξ)ϕ̂j(ξ)dξ| ≤Min{‖ϕ̂0‖12

nj, C0|t|−(n−1)/22j(n+1)/2}

(5.47)

which means that

‖U(t)ϕj‖∞ ≤ Cmin{2nj, |t|−(n−1)/22j(n+1)/2}. (5.48)

Let now f be a sufficiently regular function in the space variable. We estimate

‖ϕj ∗ U(t)f‖∞ = ‖ϕj ∗ U(t)ϕ̃j ∗ f‖∞ ≤ ‖U(t)ϕj‖∞‖ϕ̃j ∗ f‖1 (5.49)

by (5.27) and the Young inequality, and therefore by (5.48)

‖ϕj ∗ U(t)f‖∞ ≤ Cmin{2nj, |t|−(n−1)/22j(n+1)/2}‖ϕ̃j ∗ f‖1. (5.50)

By interpolation between (5.50) and the unitarity of U(t) in L2, we obtain

‖ϕj ∗ U(t)f‖q ≤ Cmin{22jδ(q), |t|−γ(q)22jβ(q)}‖ϕ̃j ∗ f‖q′ (5.51)

for 2 ≤ q ≤ ∞. From now on, we consider separately the case q > 2 and the

limiting case q = 2.

The case q > 2. We multiply (5.51) by 2jβ(q) and take the norm in l2j ,

thereby obtaining

‖U(t)f ; Ḃ−β(q)
q ‖l2j

≤ C|t|−γ(q)‖f ; Ḃ′β(q)
q ‖, (5.52)
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where we have discarded the first term in the minimun and used the definition

of ϕ̃j and the definition (5.28) of Besov spaces.

Let now f depend also on time and rewrite (5.52) as

‖U(t− t′)f(t′); Ḃ−β(q)
q ‖ ≤ C|t− t′|−γ(q)‖f(t′); Ḃ′β(q)

q ‖. (5.53)

Let 0 ≤ 2/q = γ(q) < 1 and let I ⊂ R be an interval. Integrating over

t′, taking the Lr norm in time and applying the Hardy-Littlewood-Sobolev

inequality, we obtain

‖UR ∗t f ;Lr(I, Ḃ−β(q)
q )‖ ≤ C‖f ;Lq′(I, Ḃ

−β(q)
q′ )‖, (5.54)

where UR stands either for U or for UR. Now the last equation without and

with retardation is the diagonal case (r1 = r2, q1 = q2) of the limiting case

2/ri = γ(qi).

See [10] for the end of the proof, which proceeds by abstract duality ar-

guments.
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